
MySQL
Pocket Reference

SECOND EDITION

George Reese

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

MySQL Pocket Reference, Second Edition
by George Reese

Copyright © 2007, 2003 George Reese. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor:

Laurel R.T. Ruma
Copyeditor: Genevieve d’Entremont
Proofreader: Laurel R.T. Ruma

Indexer: Johnna VanHoose Dinse
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
February 2003: First Edition.
July 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, MySQL Pocket Reference, the image of a kingfisher, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51426-3
ISBN-13: 978-0-596-51426-6
[TM]

v

Contents

Introduction 1

MySQL 5 2
Views 3
Triggers 3
Stored Procedures 3
Cursors 4
New Storage Engines 4
Database Events 5

Setup 5
Downloading MySQL 5
Configuration 6
Startup 8
Set the Root Password 10
Replication 10

Command-Line Tools 12

Data Types 15
Numerics 16
Strings 21
Dates 26
Complex Types 28

vi | Contents

SQL 30
Case Sensitivity 31
Literals 31
Identifiers 33
Comments 34
Commands 35
Transaction Rules 86

Operators 87
Rules of Precedence 87
Arithmetic Operators 88
Comparison Operators 89
Logical Operators 91

Functions 91
Aggregate Functions 91
General Functions 93

Storage Engines 114

Stored Procedures and Functions 115
Parameters 116
Logic 117
Handlers and Conditions 122

Triggers 123

Index 125

1

Chapter 1

MySQL Pocket Reference

Introduction
When I fly across the country, I often pass the hours pro-
gramming on my PowerBook. If that programming involves
MySQL, I inevitably end up lugging around the book I co-
wrote, Managing and Using MySQL (O’Reilly). I don’t carry
around the book to show it off; the problem is that no mat-
ter how experienced you are with MySQL, you never know
when you will need to look up the exact syntax of an obscure
function or SQL statement.

The MySQL Pocket Reference is a quick reference that you
can take with you anywhere you go. Instead of racking your
brain for the exact syntax of a variant of ALTER TABLE that you
generally never use, you can reach into your laptop case and
grab this reference. As an experienced MySQL architect,
administrator, or programmer, you can look to this reference.

This book does not, however, teach MySQL. I expect that
you have learned or are in the process of learning MySQL
from a book such as Managing and Using MySQL. Though I
start with a reference on MySQL setup, it is designed to help
you remember the full process of MySQL configuration—not
to teach you the process.

2 | MySQL Pocket Reference

Acknowledgments
I first would like to thank my editor Andy Oram, as always,
for helping me along. I would also like to thank the book’s
strong technical reviewers, Paul Dubois, Judith Myerson, and
Tim Allwine. Finally, I would like to thank my co-authors for
Managing and Using MySQL, Tim King and Randy Jay
Yarger, who helped set the foundation that made this pocket
reference possible and necessary.

Conventions
The following conventions are used in this book:

Constant width
Used to indicate anything that might appear in a pro-
gram, including keywords, function names, SQL com-
mands, and variable names. This font is also used for
code examples, output displayed by commands, and sys-
tem configuration files.

Constant width bold
Used to indicate user input.

Constant width italic
Used to indicate an element (e.g., a filename or variable)
that you supply.

Italic
Used to indicate directory names, filenames, program
names, Unix commands, and URLs. This font is also
used to introduce new terms and for emphasis.

MySQL 5
If you have been using MySQL for a while, you really don’t
need to learn a thing about MySQL 5 to keep going. Every-
thing you are used to using still works just as it always has.
For the most part, MySQL 5 is about adding enterprise

MySQL 5 | 3

database features seen in other database engines without
burdening MySQL with concepts that make it harder to learn
and use.

Views
Views are denormalized, table-like structures that represent a
snapshot of your data that match specific query parameters.
You can thus represent as data from a single table the result
of a complex join. New commands supporting views include
CREATE VIEW, DROP VIEW, and ALTER VIEW.

Triggers
A database trigger is functionality that you create that gets
executed whenever a specific event occurs on a table. For
example, you can trigger behavior for a table whenever a new
row is inserted. New commands supporting triggers include
CREATE TRIGGER and DROP TRIGGER.

Stored Procedures
Stored procedures are the big feature most people have been
waiting for. A stored procedure is much like creating a func-
tion that is written entirely in SQL and stored in the database.
Stored procedures are useful for encapsulating a number of
SQL statements that always get executed together under a sin-
gle logical name for use by clients. MySQL includes a number
of new commands to support stored procedures:

• CREATE PROCEDURE

• ALTER PROCEDURE

• DROP PROCEDURE

• CALL

• BEGIN/END

4 | MySQL Pocket Reference

Cursors
A cursor is a tool that enables you to represent an entire data
set within a MySQL stored procedure. MySQL cursors are lim-
ited in that they are asensitive (a quality affecting their
response to changes in the table), nonscrolling (cursors must
be used sequentially, moving forward), and read-only. New
commands supporting cursors include OPEN, FETCH, and CLOSE.

New Storage Engines
The most common storage engines (also known as table
types) in MySQL are MyISAM and InnoDB. But a number of
new ones were added in recent versions of MySQL:

ARCHIVE
Offers fast stores and selects without indexes, but no
updates or deletions.

BLACKHOLE
Discards data; used to support replication.

CSV
Stores data in a comma-separated values format com-
monly used for plain text data exchange.

FALCON
A new general-purpose data storage engine that may
one day replace InnoDB. It is currently somewhat
experimental.

FEDERATED
Offers access to a database on a remote server.

MERGE
Combines multiple MyISAM tables.

NDB/NDBCLUSTER
Network database, used with MySQL Cluster.

Setup | 5

Database Events
Introduced with MySQL 5.1, database events allow you to
arrange for SQL that runs at a specified time in the future
either once, or on a recurring calendar.

Setup
You can install MySQL by compiling the source code with
the options that best suit your needs, or by downloading and
installing a prebuilt binary. In general, you’ll want to use the
package management system (such as the BSD ports system)
appropriate to your operating system. You can also find both
binary and source code at the MySQL web site, http://www.
mysql.com.

Before installing using either approach, you need to prepare
your operating system for MySQL. Specifically, you should
create a mysql user and group under which MySQL will run.

Downloading MySQL
MySQL AB changes the download process somewhat fre-
quently, so the exact process of downloading MySQL may
vary from the details described here. MySQL comes in stan-
dard and debug packages. When in doubt, get the standard
package. It is generally what you will want for a production
server.

If you are having runtime problems with your MySQL envi-
ronment, you can test your application against a Debug
install to get detailed debug information on your MySQL
operation. You do not want to use the Debug package for any
production environment.

The MySQL download page also provides a variety of addi-
tional tools, including test suites, client utilities, libraries,
and header files. These tools are not essential to getting

6 | MySQL Pocket Reference

MySQL up and running, though they may be necessary for
programming on a machine without a MySQL server installa-
tion or just to make life easier.

Configuration
MySQL has three different kinds of configuration, both for
the server process at server startup and for the client pro-
cesses when a user executes them. In order of preference,
these configuration options include:

1. Command-line options

2. Configuration file options

3. Environment variable options

In other words, if you have the password option specified on
the command line, in your configuration file, and in an envi-
ronment variable, the command-line option wins. Table 1
shows a list of configuration options. Each option applies to
one or more MySQL tools, depending on the context.

Table 1. MySQL configuration options

Option Description

basedir=directory Specifies the root directory of your MySQL
installation.

Batch Executes in batch mode, meaning no
command-line prompts or other
information is sent to stdout. This is the
default mode when used with a pipe.

character-sets-dir=directory Specifies where your character set files are
stored.

Compress Tells the client and server to use
compression in the network protocol.

datadir=directory Specifies the location of MySQL’s data
files.

debug=options Specifies a list of debug options.

Setup | 7

A MySQL configuration file has the following format:

Example MySQL configuration file
#
These options go to all clients
[client]
password = my_password
port = 3306
socket = /var/lib/mysql/mysql.sock

Force Indicates that you want processing to
continue for client utilities even when an
error is encountered.

host=hostname Identifies the host to which a client
should connect by default.

language=language Specifies the language to use for
localization.

password=password Specifies a default password for clients to
use to connect.

port=port_# Specifies the port number to which the
server should listen and to which clients
should connect.

Silent Silently exit if a connection failure occurs.

skip-new-routines Tells the MySQL server to avoid new,
potential buggy routines.

sleep=seconds Sleep between commands.

socket=name Socket file to use for local connections.

user=username Specifies the user name to use for client
connections.

variable-name =value Sets the specified variable name to a
particular value.

Verbose Tells MySQL to talk more about what is
happening.

Wait Tells the client to wait after a connection
failure and then retry the connection.

Table 1. MySQL configuration options (continued)

Option Description

8 | MySQL Pocket Reference

These options are specifically targeted at the mysqld
server
[mysqld]
port = 3306
socket = /var/lib/mysql/mysql.sock
max_allowed_packet=1M

MySQL supports multiple configuration files. As a general
rule, it checks files in the following order of preference:

1. User configuration file (Unix only).

2. Configuration file specified through the --defaults-
extra-file=filename option.

3. A configuration file in the MySQL data directory.

4. The system configuration file.

In all cases except the command-line and user configuration
options, the name of the configuration file on Unix is my.cnf
and on Windows is my.ini. A Unix user can override system
configuration information by building his own configuration
file in ~/.my.cnf. The system configuration file on a Unix sys-
tem is /etc/my.cnf. Windows, on the other hand, has two
system configuration locations, in order of preference:

1. C:\my.cnf

2. C:\WINNT\System32\my.cnf

You can alternately specify a file on the command line using
the --defaults-file=filename option. This option causes all
options specified in other files to be ignored, even if they are
not overridden in the file you specify.

Startup
In general, you will want MySQL to begin running when the
operating system comes up. How you do this depends on
your operating system.

Setup | 9

Mac OS X

The modern Mac OS X binary package automatically sets itself
up to launch on start. To verify this, you should see a /Library/
StartupItems/MySQLCOM/ directory on your hard drive.

Solaris

The MySQL binary for Solaris does not set itself up as a ser-
vice to run at startup. It nevertheless sets up a Solaris mani-
fest file in /var/svc/manifest/application/database/mysql.xml.
You should first verify that this file exists. If not, check the
MySQL distribution for a Solaris manifest or look on the
Internet. To set up MySQL to launch on startup, first verify it
is not yet set to run on startup:

$ svcs mysql

If you see the following:

svcs: Pattern 'mysql' doesn't match any instances
STATE STIME FMRI

The service is not yet installed. To install the service:

$ svccfg import /var/svc/manifest/application/database/
mysql.xml

One installed, you should see the following:

$ svcs mysql
STATE STIME FMRI
disabled Mar_10 svc:/application/database/mysql:
default

To start MySQL and have it run on start-up, execute:

$ svcadm enable mysql

Other Unix

Setting up other variants of Unix is as simple as copying the
script mysql.server from the source’s support-files directory to
your version of Unix’s startup directory and making sure it is
executable by root. Under FreeBSD, for example, place this
script in /usr/local/etc/rc.d.

10 | MySQL Pocket Reference

Once installed, you should run the mysql_install_db tool to
set up your databases.

Set the Root Password
After starting the server, and before doing anything else, set a
password for the root user:

mysqladmin -u root password a_good_password

Replication
Configuring two MySQL server instances to use replication
requires you to set up one as the replication master (i.e., the
authoritative database) and the other as a replication slave.
Configuration of the server involves nothing more than set-
ting it up for binary logging and specifying a server ID. When
you configure a server for binary logging, you are telling it to
save all transactions against it to a binary logfile. Slaves can
later read this logfile and determine what transactions to rep-
licate into their respective environments.

Master configuration

As just noted, you must set up binary logging on the master
for replication to work. You also need to give the server a
server ID. All of this is done through the MySQL configura-
tion file:

[mysqld]
log-bin=mysql-bin
server-id=1

The server ID is an arbitrary integer (pick whatever value you
like), but it must be unique across all MySQL servers in your
infrastructure. You will also be handing out IDs to the repli-
cation slaves.

Slaves must connect to the master using a valid MySQL user
with REPLICATION SLAVE privileges. You can either use an
existing user or set up a user specifically for replication.

Setup | 11

Slave configuration

As with the master, you need to configure the MySQL slave
server to have a unique server ID.

With both the slave and master configured with unique IDs
and binary logging enabled on the master, you next need to
get some basic configuration information from the master.
What makes this complicated is that you need to get this
information from the master while no updates are occurring.
To accomplish this, start a client on the master and enter:

mysql> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.30 sec)

mysql> SHOW MASTER STATUS;
+-------------------+----------+--------------+-----------
-------+
| File | Position | Binlog_Do_DB | Binlog_
Ignore_DB |
+-------------------+----------+--------------+-----------
-------+
| crm114-bin.000044 | 98 | |
|
+-------------------+----------+--------------+-----------
-------+
1 row in set (0.05 sec)

And in another window, while your mysql client with the
lock is still running, enter:

$ mysqldump --master-data -uroot -p DATABASE_TO_REPLICATE
> /var/tmp/master.dump

If you need to replicate existing data, you will need to leave
the client running mysql open so that your lock remains in
place while running mysqldump. Failure to do so may result
in corruption on the slave.

You can then take your dump file to your slave and import
the file. Before importing it, however, you should edit the
CHANGE MASTER command near the top of the file to include the
proper master server, user name, and password. Make sure
to retain the position and logfile values!

12 | MySQL Pocket Reference

Once done with your changes, start the slave with the --skip-
slave option, load the dump file into your slave, start the slave
threads, and you are ready to go.

You can use the same master dump to set up any number of
slaves.

Command-Line Tools
You can interact with MySQL entirely from the command
line. In general, each MySQL command accepts as an argu-
ment any appropriate option from the configuration options
listed earlier. You prefix any such option with two dashes:

mysql --user=username

In addition, each of these options has a short form:

mysql -uusername

To see which options apply to individual commands and
their short forms, refer to the manpage for the command in
question using the following command:

$ man -M/usr/local/mysql/man mysql

MySQL provides the following command-line tools:

msql2mysql
This utility is handy for people converting applications
written for mSQL to MySQL. These days, however, few
people need this help.

myisamchk
This tool verifies the integrity of your MyISAM tables
and potentially fixes any problems that it detects.

mysql
The MySQL interactive SQL interpreter. It enables you
to execute SQL on the command line. You can span your
SQL across any number of lines. The tool executes your
SQL when you terminate it with a semicolon or the
escape sequence \g.

Command-Line Tools | 13

mysql_upgrade
After you install a new version of MySQL, you can run
this utility to examine your tables and make sure they are
consistent with your new version of MySQL. You should
run this command each time you upgrade MySQL.

mysqladmin
The MySQL administrative interface. Though many of
this tool’s functions can be accomplished using SQL and
the mysql command-line utility, it nevertheless provides a
quick way to perform an administrative task straight
from the Unix command line without entering an SQL
interpreter. You can specifically execute the following
administrative commands:

create databasename
Creates the specified database.

drop databasename
The opposite of create, this command destroys the
specified database.

extended-status
Provides an extended status message from the server.

flush-hosts
Flushes all cached hosts.

flush-logs
Flushes all logs.

flush-status
Flushes all status variables.

flush-tables
Flushes all tables.

flush-threads
Flushes the thread cache.

flush-privileges
Forces MySQL to reload all grant tables.

14 | MySQL Pocket Reference

kill id[,id]
Kills the specified MySQL threads.

password new_password
Sets the password for the user to the specified new
password. mysqladmin -u root password new_password
should be the first thing you do with any new
MySQL install.

ping
Verifies that mysqld is actually running.

processlist
Shows the active MySQL threads. You can kill these
threads with the mysqladmin kill command.

reload
Reloads the grant tables.

refresh
Flushes all tables, closes all logfiles, then opens them
again.

shutdown
Shuts MySQL down.

status
Shows an abbreviated server status.

variables
Prints out available variables.

version
Displays the server version information.

mysqlaccess
A command-line interface for managing users. This tool
is basically a shortcut for the SQL GRANT command.

mysqlcheck
This tool is a data integrity verifier much like myisamchk.
A key difference is that you run this tool while MySQL is

Data Types | 15

running. Exactly what kind of checks and fixes occur
vary from database engine to database engine.

mysqld
The MySQL server process. You should never start this
directly; instead use mysqld_safe.

mysqld_safe
The server process manager. (Under MySQL versions
prior to MySQL 4.0, this script was called safe_mysqld.)
It is a process that starts up the mysqld server process and
restarts it should it crash. Note that the mysql.server star-
tup script executes mysqld_safe as the appropriate user at
server startup.

mysqldump
Dumps the state of a MySQL database or set of data-
bases to a text file that you can later use to restore the
databases you dumped.

mysqlimport
Imports text files in a variety of formats into your data-
base. It expects the base name (the name of the file with-
out its extension) to match the name of the table you will
import.

mysqlshow
Displays the structure of the specified MySQL database
objects, including databases, tables, and columns.

mysqlslap
A tool to emulate client load on your MySQL server.

Data Types
For each data type, the syntax shown uses square brackets
([]) to indicate optional parts of the syntax. The following
example shows how BIGINT is explained in this chapter:

BIGINT[(display_size)]

16 | MySQL Pocket Reference

This indicates that you can use BIGINT alone or with a dis-
play size value. The italics indicate that you do not enter
display_size literally, but instead enter your own value. Pos-
sible uses of BIGINT include:

BIGINT
BIGINT(20)

In addition to the BIGINT type, many other MySQL data types
support the specification of a display size. Unless otherwise
specified, this value must be an integer between 1 and 255.

Before MySQL 5, MySQL would silently change column val-
ues in certain circumstances. As of MySQL 5, these silent
changes no longer happen.

VARCHAR → CHAR
When the specified VARCHAR column size is less than four
characters, it is converted to CHAR.

CHAR → VARCHAR
When a table has at least one column of a variable
length, all CHAR columns greater than three characters in
length are converted to VARCHAR.

TIMESTAMP display sizes
Display sizes for TIMESTAMP fields must be an even value
between 2 and 14. A display size of 0 or greater than 14
converts the field to a display size of 14. An odd-valued
display size is converted to the next highest even value.
MySQL 5 no longer takes a size value for timestamps.

Numerics
MySQL supports all ANSI SQL2 numeric data types. MySQL
numeric types break down into integer, decimal, and float-
ing point types. Within each group, the types differ by the
amount of storage required for them.

Numeric types allow you to specify a display size, which
affects the way MySQL displays results. The display size
bears no relation to the internal storage provided by each

Data Types | 17

data type. In addition, the decimal and floating point types
allow you to optionally specify the number of digits that fol-
low the decimal point. In such cases, the digits value should
be an integer from 0 to 30 that is at most two less than the
display size. If you do make the digits value greater than two
less than the display size, the display size will automatically
change to two more than the digits value. For instance,
MySQL automatically changes FLOAT(6,5) to FLOAT(7,5).

When you insert a value into a column that requires more
storage than the data type allows, it will be clipped to the
minimum (negative values) or maximum (positive values)
value for that data type. MySQL will issue a warning when
such clipping occurs during ALTER TABLE, LOAD DATA INFILE,
UPDATE, and multirow INSERT statements. The exception is
when you are running MySQL 5 or later under strict SQL
mode, in which case MySQL will raise an error for inserts
and updates.

The AUTO_INCREMENT attribute may be supplied for at most
one column of an integer type in a table. The UNSIGNED
attribute may be used with any numeric type. An unsigned
column may contain only nonnegative integers or floating-
point values. The ZEROFILL attribute indicates that the col-
umn should be left padded with zeros when displayed by
MySQL. The number of zeros padded is determined by the
column’s display width.

BIGINT
BIGINT[(display_size)] [AUTO_INCREMENT] [UNSIGNED] [ZEROFILL]

Storage

8 bytes

Description

Largest integer type, supporting a range of whole numbers from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (0 to
18,446,744,073,709,551,615 unsigned). Because of the way

18 | MySQL Pocket Reference

MySQL handles BIGINT arithmetic, you should avoid performing
any arithmetic operations on unsigned BIGINT values greater than
9,223,372,036,854,775,807. If you do, you may end up with
imprecise results.

BIT
BIT[(bits)]

Storage

bits bits + 7 or 8 bits (approximately)

Description

Prior to MySQL 5.0.3, a BIT field behaved exactly like a
TINYINT(1) field. This data type stores a bitmap value of the speci-
fied number of bits. If you enter a value requiring fewer bits than
allowed for the field, MySQL will pad the left bits with zeroes.

DEC

Synonym for DECIMAL.

DECIMAL
DECIMAL[(precision, [scale])] [UNSIGNED] [ZEROFILL]

Storage

Varies

Description

Stores floating-point numbers where precision is critical, such as
for monetary values. DECIMAL types require you to specify the
precision and scale. The precision is the number of significant
digits in the value. The scale is the number of those digits that
come after the decimal point. For example, a BALANCE column
declared as DECIMAL(9, 2) would store numbers with nine signifi-
cant digits, two of which are to the right of the decimal point.
The range for this declaration would be -9,999,999.99 to
9,999,999.99. If you specify a number with more decimal points,
it is rounded to fit the proper scale. Values beyond the range of
the DECIMAL are clipped to fit within the range.

Data Types | 19

Prior to MySQL 5, MySQL actually stores DECIMAL values as
strings, not as floating-point numbers. It uses one character for
each digit, one character for the decimal points when the scale is
greater than 0, and one character for the sign of negative numbers.
When the scale is 0, the value contains no fractional part.

ANSI SQL supports the omission of precision and/or scale where
the omission of scale creates a default scale of zero and the omis-
sion of precision defaults to an implementation-specific value. In
the case of MySQL, the default precision is 10.

DOUBLE
DOUBLE[(display_size, digits)] [ZEROFILL]

Storage

8 bytes

Description

A double-precision floating-point number. This type stores
large floating-point values. DOUBLE columns store negative values
from -1.7976931348623157E+308 to -2.2250738585072014E-
308, 0, and positive numbers from 2.2250738585072014E-308
to 1.7976931348623157E+308.

DOUBLE PRECISION

Synonym for DOUBLE.

FLOAT
FLOAT[(display_size, digits)] [ZEROFILL]

Storage

4 bytes

Description

A single-precision floating-point number. This type is used to store
small floating-point numbers. FLOAT columns can store negative
values between -3.402823466E+38 and -1.175494351E-38, 0, and
positive values between 1.175494351E-38 and 3.402823466E+38.

20 | MySQL Pocket Reference

INT
INT[(display_size)] [AUTO_INCREMENT] [UNSIGNED] [ZEROFILL]

Storage

4 bytes

Description

A basic whole number with a range of -2,147,483,648 to
2,147,483,647 (0 to 4,294,967,295 unsigned).

INTEGER

Synonym for INT.

MEDIUMINT
MEDIUMINT[(display_size)] [AUTO_INCREMENT] [UNSIGNED] [ZEROFILL]

Storage

3 bytes

Description

A basic whole number with a range of -8,388,608 to 8,388,607
(0 to 16,777,215 unsigned).

NUMERIC

Synonym for DECIMAL.

REAL

Synonym for DOUBLE.

SMALLINT
SMALLINT[(display_size)] [AUTO_INCREMENT] [UNSIGNED] [ZEROFILL]

Storage

2 bytes

Data Types | 21

Description

A basic whole number with a range of -32,768 to 32,767 (0 to
65,535 unsigned).

TINYINT
TINYINT[(display_size)] [AUTO_INCREMENT] [UNSIGNED] [ZEROFILL]

Storage

1 byte

Description

A basic whole number with a range of -128 to 127 (0 to 255
unsigned).

Strings
MySQL supports two general string categories: text and
binary. Each category, in turn, has different types to support
different field sizes and collations. Depending on the colla-
tion, MySQL performs string comparisons on a case-sensitive,
case-insensitive, or binary (byte-by-byte) basis.

When a text type (CHAR, VARCHAR, etc.) is qualified by the
BINARY keyword, that column remains a text column but uses
a binary collation.

BINARY
BINARY(size)

Size

Specified by the size value in a range of 0 to 255.

Storage

size bytes

22 | MySQL Pocket Reference

Description

The BINARY data type is the binary version of the CHAR data type.
This main difference is that this field stores binary data and the
size is measured by bytes, not characters. Binary values are right
padded to the specified field size when the value entered is less
than the field size. Starting with MySQL 5.0.15, the pad value is
0x00. In earlier versions, it is a space.

BLOB

Binary form of TEXT.

CHAR
CHAR(size) [BINARY] [CHARACTER SET charset] [COLLATE collation]

Size

Specified by the size value in a range of to 255.

Storage

Varies based on the specified size and the underlying character
encoding.

Description

A fixed-length text field. String values with fewer characters than
the column’s size are right padded with spaces. The right padding
is removed on retrieval of the value from the database.

CHAR(0) fields are useful for backward compatibility with legacy
systems that no longer store values in the column.

CHARACTER

Synonym for CHAR.

CHARACTER VARYING

Synonym for VARCHAR.

Data Types | 23

LONGBLOB

Binary form of LONGTEXT.

LONGTEXT
LONGTEXT [CHARACTER SET charset] [COLLATE collation]

Size

0 to 4,294,967,295.

Storage

Length of value + 4 bytes.

Description

Storage for large text values. While the theoretical limit on the size
of the text that can be stored in a LONGTEXT column exceeds 4 GB,
the practical limit is much less due to limitations of the MySQL
communication protocol and the amount of memory available to
both the client and server ends of the communication.

MEDIUMBLOB

Binary form of MEDIUMTEXT.

MEDIUMTEXT
MEDIUMTEXT [CHARACTER SET charset] [COLLATE collation]

Size

0 to 16,777,215.

Storage

Length of value + 3 bytes.

Description

Storage for medium-sized text values.

24 | MySQL Pocket Reference

NCHAR

Synonym of CHAR.

NATIONAL CHAR

Synonym of CHAR.

NATIONAL CHARACTER

Synonym of CHAR.

NATIONAL VARCHAR

Synonym of VARCHAR.

TEXT
TEXT [CHARACTER SET charset] [COLLATE collation]

Size

0 to 65,535.

Storage

Length of value + 2 bytes.

Description

Storage for most text values.

TINYBLOB

Binary form of TINYTEXT.

TINYTEXT
TINYTEXT [CHARACTER SET charset] [COLLATE collation]

Size

0 to 255.

Data Types | 25

Storage

Length of value + 1 byte.

Description

Storage for short text values.

VARBINARY
VARBINARY(size)

Size

Specified by the size value.

Storage

size bytes

Description

The VARBINARY data type is the binary version of the VARCHAR data
type. This main difference is that this field stores binary data and
the size is measured by bytes, not characters. Unlike BINARY
values, VARBINARY values are not right padded.

VARCHAR
VARCHAR(size) [BINARY] [CHARACTER SET charset] [COLLATE
collation]

Size

Specified by the size value in a range of to 65,532 (1 to 255 prior
to MySQL 5). The size is the effective size of the column and is
limited by the maximum row size in characters. The actual storage
size thus depends on the underlying character set of the column.

Storage

Varies as a function of the number of characters specified by size
and the storage requirements of the individual characters in accor-
dance with the underlying character encoding mechanism.

26 | MySQL Pocket Reference

Description

Storage for variable-length text. Trailing spaces are removed from
VARCHAR values prior to MySQL 5. MySQL 5 and later follow the
standard of not removing trailing whitespaces.

Dates
MySQL date types are extremely flexible tools for storing
date information. They are also extremely forgiving in the
belief that it is up to the application, not the database, to val-
idate date values. MySQL only checks that months range
from 0 to 12 and dates range from to 31. February 31, 2001,
is therefore a legal MySQL date. More useful, however, is the
fact that February 0, 2001, is a legal date. In other words,
you can use 0 to signify dates in which you do not know a
particular piece of the date. MySQL 5 is more restrictive on
what it will allow in date fields.

Though MySQL is somewhat forgiving on the input format,
you should attempt to format all date values in your applica-
tions in MySQL’s native format to avoid any confusion.
MySQL always expects the year to be the leftmost element of
a date format. If you assign an illegal value in an SQL opera-
tion, MySQL inserts a zero for that value.

MySQL automatically converts date and time values to inte-
ger values when used in an integer context.

DATE
DATE

Format

YYYY-MM-DD (2001-01-01)

Storage

3 bytes

Data Types | 27

Description

Stores a date in the range of January 1, 1000 ('1000-01-01') to
December 31, 9999 ('9999-12-31') in the Gregorian calendar.

DATETIME
DATETIME

Format

YYYY-MM-DD hh:mm:ss (2001-01-01 01:00:00)

Storage

8 bytes

Description

Stores a specific time in the range of 12:00:00 A.M., January 1,
1000 ('1000-01-01 00:00:00') to 11:59:59 P.M., December 31,
9999 ('9999-12-31 23:59:59') in the Gregorian calendar.

TIME
TIME

Format

hh:mm:ss (06:00:00)

Storage

3 bytes

Description

Stores a time value in the range of midnight ('00:00:00') to one
second before midnight ('23:59:59').

TIMESTAMP
TIMESTAMP

Format

YYYY-MM-DD hh:mm:ss (2001-01-01 01:00:00)

28 | MySQL Pocket Reference

Storage

4 bytes

Description

A simple representation of a point in time down to the second in
the range of midnight on January 1, 1970, to one minute before
midnight on December 31, 2037. Its primary utility is keeping
track of table modifications. When you insert a NULL value into a
TIMESTAMP column, the current date and time are inserted instead.
When you modify any value in a row with a TIMESTAMP column,
the first TIMESTAMP column will be automatically updated with the
current date and time.

The timestamp format used prior to MySQL 4.1 is no longer
supported in MySQL 5.1.

YEAR
YEAR[(size)]

Format

YYYY (2001)

Storage

1 byte

Description

Stores a year of the Gregorian calendar. The size parameter
enables you to store dates using 2-digit years or 4-digit years. The
range for a YEAR(4) is 1900 to 2155; the range for a YEAR(2) is
1970-2069. The default size is YEAR(4).

Complex Types
MySQL’s complex data types ENUM and SET are just special
string types. They are listed separately in this book because
they are conceptually more complex and represent a lead
into the SQL3 data types that MySQL may support in the
future.

Data Types | 29

ENUM
ENUM(value1, value2, ...)

Storage

1–255 members: 1 byte

256–65,535 members: 2 bytes

Description

Stores one value of a predefined list of possible strings. When you
create an ENUM column, you provide a list of all possible values.
Inserts and updates are allowed to set the column to values only
from that list. Any attempt to insert a value that is not part of the
enumeration will cause an empty string to be stored instead.

You may reference the list of possible values by index, where the
index of the first possible value is 0. For example:

SELECT COLID FROM TBL WHERE COLENUM = 0;

Assuming COLID is a primary key column and COLENUM is the
column of type ENUM, this statement retrieves the primary keys of
all rows in which the COLENUM value equals the first value of that
list. Similarly, sorting on ENUM columns happens according to
index, not string value.

The maximum number of elements allowed for an ENUM column is
65,535.

SET
SET(value1, value2, ...)

Storage

1–8 members: 1 byte

9–16 members: 2 bytes

17–24 members: 3 bytes

25–32 members: 4 bytes

33–64 members: 8 bytes

30 | MySQL Pocket Reference

Description

A list of values taken from a predefined set of values. A field can
contain any number—including none—of the strings specified in
the SET statement. A SET is basically an ENUM that allows each field
to contain more than one of the specified values. A SET, however,
is not stored according to index, but as a complex bit map. Given
a SET with the members Orange, Apple, Pear, and Banana, each
element is represented by an “on” bit in a byte, as shown in
Table 2.

In this example, the combined values of Orange and Pear are
stored in the database as 5 (bits 0101).

You can store a maximum of 64 values in a SET column. Though
you can assign the same value multiple times in an SQL statement
updating a SET column, only a single value will actually be stored.

SQL
MySQL fully supports ANSI SQL 92, entry level. A SQL ref-
erence for MySQL is thus largely a general SQL reference.
Nevertheless, MySQL contains some proprietary enhance-
ments that can help you at the mysql command line. This
section thus provides a reference for the SQL query language
as it is supported in MySQL.

SQL is a kind of controlled English language consisting of
verb phrases. Each of these verb phrases begins with an SQL
command followed by other SQL keywords, literals, identifi-
ers, or punctuation.

Table 2. MySQL’s representation of set elements

Member Decimal value Bitwise representation

Orange 1 0001

Apple 2 0010

Pear 4 0100

Banana 8 1000

SQL | 31

Case Sensitivity
Case-sensitivity in MySQL depends on a variety of factors,
including the token in question and the underlying operat-
ing system. Table 3 shows the case-sensitivity of different
SQL tokens in MySQL.

Literals
Literals come in the following varieties:

String
String literals may be enclosed either by single or double
quotes. If you wish to be ANSI compatible, you should
always use single quotes. Within a string literal, you may
represent special characters through escape sequences.
An escape sequence is a backslash followed by another
character to indicate to MySQL that the second charac-
ter has a meaning other than its normal meaning. Table 4
shows the MySQL escape sequences. Quotes within a
string can be escaped with doubled apostrophes:

'This is a ''quote'''

Table 3. The case-sensitivity of MySQL

Token type Case-sensitivity

Keywords Case-insensitive.

Identifiers (databases and tables) Dependent on the case-sensitivity for the
underlying operating system. On all Unix
systems except Mac OS X using HFS+, database
and table names are case-sensitive. On Mac OS
X using HFS+ and Windows, they are case-
insensitive.

Table aliases Case-sensitive.

Column aliases Case-insensitive.

32 | MySQL Pocket Reference

However, you do not need to double up on single quotes
when the string is enclosed by double quotes.

Binary
Like string literals, binary literals are enclosed in single or
double quotes. You must use escape sequences in binary
data to escape NUL (ASCII 0), " (ASCII 34), ' (ASCII 39),
and \ (ASCII 92).

Bit
Bit values are 1s and 0s enclosed in single quotes and
preceded by a b: b'010101', b'10', etc.

Boolean
TRUE and FALSE.

Decimal
Numbers appear as a sequence of digits. Negative num-
bers are preceded by a - sign and a . indicates a decimal
point. You may also use scientific notation, as in: -45198.
2164e+10.

Table 4. MySQL escape sequences.

Escape sequence Value

\0 NUL

\' Single quote

\" Double quote

\b Backspace

\n Newline

\r Carriage return

\t Tab

\z Ctrl-z (workaround for Windows use of Ctrl-z as EOF)

\\ Backslash

\% Percent sign (only in contexts where a percent sign
would be interpreted as a wildcard)

_ Underscore (only in contexts where an underscore
would be interpreted as a wildcard)

SQL | 33

Hexadecimal
The way in which a hexadecimal is interpreted is
dependent on the context. In a numeric context, the
hexadecimal literal is treated as a numeric value. In a
nonnumeric context, it is treated as a binary value. For
example, 0x1 + 1 is 2, but 0x4d7953514c by itself is
MySQL.

Null
The special keyword NULL signifies a null literal in SQL.
In the context of import files, the special escape sequence
\N signifies a null value.

Identifiers
You can reference any given object on a MySQL server—
assuming you have the proper rights—using one of the fol-
lowing conventions:

Absolute naming
Absolute naming specifies the full path of the object you
are referencing. For example, the column BALANCE in the
table ACCOUNT in the database BANK would be referenced
absolutely as:

BANK.ACCOUNT.BALANCE

Relative naming
Relative naming allows you to specify only part of the
object’s name, with the rest of the name being assumed
based on your current context. For example, if you are
currently connected to the BANK database, you can refer-
ence the BANK.ACCOUNT.BALANCE column as ACCOUNT.
BALANCE. In an SQL query where you have specified that
you are selecting from the ACCOUNT table, you may refer-
ence the column using only BALANCE. You must provide
an extra layer of context whenever relative naming might
result in ambiguity. An example of such ambiguity would
be a SELECT statement pulling from two tables that both
have BALANCE columns.

34 | MySQL Pocket Reference

Aliasing
Aliasing enables you to reference an object using an alter-
nate name that helps avoid both ambiguity and the need
to fully qualify a long name.

In general, MySQL allows you to use any character in an
identifier. (Older versions of MySQL limited identifiers to
valid alphanumeric characters from the default character set,
as well as $ and _.) This rule is limited, however, for data-
bases and tables, because these values must be treated as files
on the local filesystem. You can, therefore, use only charac-
ters valid for the underlying filesystem’s naming conventions
in a database or table name. Specifically, you may not use /
or . in a database or table name. You can never use NUL
(ASCII 0) or ASCII 255 in an identifier. MySQL 5 lifts these
restrictions.

When an identifier is also an SQL keyword, you must
enclose the identifier in backticks:

CREATE TABLE 'select' ('table' INT NOT NULL PRIMARY KEY
AUTO_INCREMENT);

Since Version 3.23.6, MySQL supports the quoting of identi-
fiers using both backticks and double quotes. For ANSI com-
patibility, however, you should use double quotes for
quoting identifiers. You must, however, be running MySQL
in ANSI_QUOTES mode.

Comments
You can introduce comments in your SQL to specify text
that should not be interpreted by MySQL. This is particu-
larly useful in batch scripts for creating tables and loading
data. MySQL specifically supports three kinds of comment-
ing: C, shell-script, and ANSI SQL commenting.

C commenting treats anything between /* and */ as com-
ments. Using this form of commenting, your comments can
span multiple lines.

SQL | 35

For example:

/*
 * Creates a table for storing customer account
information.
*/
DROP TABLE IF EXISTS ACCOUNT;

CREATE TABLE ACCOUNT (ACCOUNT_ID BIGINT NOT NULL
 PRIMARY KEY AUTO_INCREMENT,
 BALANCE DECIMAL(9,2) NOT NULL);

Shell-script commenting treats anything from a # character to
the end of a line as a comment:

CREATE TABLE ACCOUNT (ACCOUNT_ID BIGINT NOT NULL
 PRIMARY KEY AUTO_INCREMENT,
 BALANCE DECIMAL(9,2)
 NOT NULL); # Not null ok?

MySQL does not really support ANSI SQL commenting, but
it comes close. ANSI SQL commenting is distinguished by
adding -- to the end of a line. MySQL supports two dashes
and a whitespace (--) followed by the comment. The space is
the non-ANSI part:

DROP TABLE IF EXISTS ACCOUNT; -- Drop the table if it
already exists

Commands
This section presents the full syntax of all commands
accepted by MySQL.

ALTER DATABASE
ALTER DATABASE database create_options

The ALTER DATABASE statement enables you to make changes to the
core configuration for a given database schema. You must have
ALTER privileges on the target database in order to perform this
command.

ALTER SCHEMA is a synonym for ALTER DATABASE.

36 | MySQL Pocket Reference

Examples
ALTER DATABASE statistics DEFAULT CHARACTER SET utf8;

ALTER EVENT
ALTER EVENT

 [DEFINER = { user | CURRENT_USER }] name

 [ON SCHEDULE schedule]

 [RENAME TO new_name]

 [ON COMPLETION [NOT] PRESERVE]

 [ENABLE | DISABLE]

 [COMMENT 'comment string']

 [DO statement]

Alters the characteristics associated with the event. For details on
the meanings of the various clauses, view the CREATE EVENT
command.

ALTER FUNCTION
ALTER FUNCTION name

[{CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL
DATA}]

 [SQL SECURITY { DEFINER | INVOKER}]

 [COMMENT 'comment string']

Alters the characteristics associated with the function. The ALTER
ROUTINE permission (granted automatically to a procedure creator)
is required to make these changes.

ALTER PROCEDURE
ALTER PROCEDURE name

[{CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL
DATA}]

 [SQL SECURITY { DEFINER | INVOKER}]

 [COMMENT 'comment string']

Alters the characteristics associated with the procedure. The ALTER
ROUTINE permission (granted automatically to a procedure creator)
is required to make these changes.

SQL | 37

ALTER TABLE
ALTER [IGNORE] TABLE table action_list

The ALTER statement covers a wide range of actions that modify
the structure of a table. This statement is used to add, change, or
remove columns from an existing table as well as to remove
indexes. To perform modifications on the table, MySQL creates a
copy of the table and changes it, meanwhile queuing all table
altering queries. When the change is done, the old table is
removed and the new table put in its place. At this point the
queued queries are performed.

As a safety precaution, if any of the queued queries create dupli-
cate keys that should be unique, the ALTER statement is rolled back
and cancelled. If the IGNORE keyword is present in the statement,
the ALTER statement proceeds as normal until the first integrity
concern.

Possible actions in action_list include:

ADD [COLUMN] create_clause [FIRST | AFTER column]

ADD [COLUMN] (create_clause, create_clause,...)
Adds a new column to the table. The create_clause is the
SQL that would define the column in a normal table creation
(see CREATE TABLE for the syntax and valid options). The
column will be created as the first column if the FIRST
keyword is specified. Alternately, you can use the AFTER
keyword to specify which column it should be added after. If
neither FIRST nor AFTER is specified, the column is added at
the end of the table’s column list. You may add multiple
columns at once by enclosing multiple create clauses sepa-
rated with commas, inside parentheses.

ADD [CONSTRAINT symbol] FOREIGN KEY name (column, ...)
[reference]

Currently applies only to the InnoDB table type, which
supports foreign keys. This syntax adds a foreign key refer-
ence to your table.

ADD FULLTEXT [name] (column, ...)
Adds a new full text index to the table using the specified
columns.

38 | MySQL Pocket Reference

ADD INDEX [name] (column, ...)
Adds an index to the altered table, indexing the specified
columns. If the name is omitted, MySQL will choose one
automatically.

ADD PRIMARY KEY (column, ...)
Adds a primary key consisting of the specified columns to the
table. An error occurs if the table already has a primary key.

ADD UNIQUE[name] (column, ...)
Adds a unique index to the altered table; similar to the ADD
INDEX statement.

ALTER [COLUMN] column SET DEFAULT value
Assigns a new default value for the specified column. The
COLUMN keyword is optional and has no effect.

ALTER [COLUMN] column DROP DEFAULT
Drops the current default value for the specified column. A
new default value is assigned to the column based on the
CREATE statement used to create the table. The COLUMN keyword
is optional and has no effect.

CONVERT TO CHARACTER SET charset [COLLATE collation]

[DEFAULT] CHARACTER SET charset [COLLATE collation]
Converts the column to the specified character set based on
the named collation.

CHANGE [COLUMN] column create_clause

MODIFY [COLUMN] create_clause [FIRST | AFTER column]
Alters the definition of a column. This statement is used to
change a column from one type to a different type while
affecting the data as little as possible. The create clause is the
same syntax as in the CREATE TABLE statement. This includes
the name of the column. The MODIFY version is the same as
CHANGE if the new column has the same name as the old. The
COLUMN keyword is optional and has no effect. MySQL will try
its best to perform a reasonable conversion. Under no circum-
stance will MySQL give up and return an error when using
this statement; a conversion of some sort will always be
performed. With this in mind, you should make a backup of
the data before the conversion and immediately check the
new values to see if they are reasonable.

SQL | 39

DISABLE KEYS
Tells MySQL to stop updating indexes for MyISAM tables.
This clause applies only to nonunique indexes. Because
MySQL is more efficient at rebuilding its keys than it is at
building them one at a time, you may want to disable keys
while performing bulk inserts into a database. You should
avoid this trick, however, if you have read operations going
against the table while the inserts are running.

DISCARD TABLESPACE
When using InnoDB, this will delete the underlying .idb file if
you are using per-table tablespaces. Be sure to back up the old
.idb file before issuing this command.

DROP [COLUMN] column
Deletes a column from a table. This statement will remove a
column and all its data from a table permanently. There is no
way to recover data destroyed in this manner other than from
backups. All references to this column in indexes will be
removed. Any indexes where this was the sole column will be
destroyed as well. (The COLUMN keyword is optional and has no
effect.)

DROP PRIMARY KEY
Drops the primary key from the table.

DROP INDEX KEY
Removes an index from a table. This statement will
completely erase an index from a table. This statement will
not delete or alter any of the table data itself, only the index
data. Therefore, an index removed in this manner can be
recreated using the ALTER TABLE ... ADD INDEX statement.

ENABLE KEYS
Recreates the indexes no longer being updated because of a
prior call to DISABLE KEYS.

IMPORT TABLESPACE
Allows you to import the data stored in an .idb file from a
backup or other source.

ORDER BY column [ASC | DESC]
Forces the table to be reordered by sorting on the specified
column name. The table will no longer be in this order when
new rows are inserted. This option is useful for optimizing
tables for common sorting queries. You can specify multiple
columns.

40 | MySQL Pocket Reference

RENAME [AS] new_table

RENAME [TO] new_table
Changes the name of the table. This operation does not affect
any of the data or indexes within the table, only the table’s
name. If this statement is performed alone, without any other
ALTER TABLE clauses, MySQL will not create a temporary table
as with the other clauses, but simply perform a fast operating
system-level rename of the table files.

table_options
Enables a redefinition of the tables options such as the table
type.

Multiple ALTER statements may be combined into one using
commas, as in the following example:

ALTER TABLE mytable DROP myoldcolumn, ADD mynewcolumn INT

To perform any of the ALTER TABLE actions, you must have SELECT,
INSERT, DELETE, UPDATE, CREATE, and DROP privileges for the table in
question.

Examples
Add the field 'address2' to the table 'people' and make
it of type 'VARCHAR' with a maximum length of 100.
ALTER TABLE people ADD COLUMN address2 VARCHAR(100)

Add two new indexes to the 'hr' table, one regular index
for the 'salary' field and one unique index for the 'id'
field. Also, continue operation if duplicate values are
found while creating the 'id_idx' index
(very dangerous!).
ALTER TABLE hr ADD INDEX salary_idx (salary)
ALTER IGNORE TABLE hr ADD UNIQUE id_idx (id)

Change the default value of the 'price' field in the
'sprockets' table to $19.95.
ALTER TABLE sprockets ALTER price SET DEFAULT '$19.95'

Remove the default value of the 'middle_name' field in
the 'names' table.
ALTER TABLE names ALTER middle_name DROP DEFAULT

Change the type of the field 'profits' from its previous
value (which was perhaps INTEGER) to BIGINT. The first

SQL | 41

instance of 'profits' is the column to change, and the
second is part of the create clause.
ALTER TABLE finances CHANGE COLUMN profits profits BIGINT

Remove the 'secret_stuff' field from the table
'not_private_anymore'
ALTER TABLE not_private_anymore DROP secret_stuff

Delete the named index 'id_index' as well as the primary
key from the table 'cars'.
ALTER TABLE cars DROP INDEX id_index, DROP PRIMARY KEY

Rename the table 'rates_current' to 'rates_1997'
ALTER TABLE rates_current RENAME AS rates_1997

ALTER TABLESPACE
ALTER TABLESPACE tablespace

 ADD DATAFILE 'file'

 INITIAL_SIZE = size

 ENGINE = engine

ALTER TABLESPACE tablespace

 DROP DATAFILE 'file'

 ENGINE = engine

Allows you to change the file structures supporting a given
tablespace. The size is a number provided in bytes for the initial
size of the tablespace. You may optionally follow the number with
an M or a G to indicate megabytes or gigabytes. This command is
available only in MySQL 5.1 for NDBCLUSTER tables.

ALTER VIEW
ALTER [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

 [DEFINER = { user | CURRENT_USER }]

 [SQL SECURITY { DEFINER | INVOKER }]

 VIEW name [(columns)]

 AS select_statement

 [WITH [CASCADED | LOCAL] CHECK OPTION]

Modifies a view in the database. This method is roughly similar to
dropping a view and creating new and requires both CREATE VIEW
and DROP privileges.

42 | MySQL Pocket Reference

ANALYZE TABLE
ANALYZE TABLE table1, table2, ..., tablen

Acquires a read lock on the table and performs an analysis on it
for MyISAM, InnoDB, and BDB tables. The analysis examines the
key distribution in the table. It returns a result set with the
following columns:

Table
The name of the table.

Op
The value analyze.

Msg_type
One of status, error, or warning.

Msg_text
The message resulting from the analysis.

BEGIN
BEGIN [WORK]

[begin_label:] BEGIN statements END [end_label]

The first form begins a new transaction. The transaction is
committed through the use of the COMMIT statement or a command
that forces an implicit commit (such as CREATE TABLE). To rollback
a transaction, use the ROLLBACK command.

The second form is unrelated to the first. It indicates that a new
series of statements that define a stored procedure. It is preceded
by a CREATE PROCEDURE statement. If you use the optional begin
label, you must have a matching end label in your END statement.
Each statement inside the BEGIN/END must be terminated by a
semicolon (;). You must, therefore, alter your delimiter before
issuing a BEGIN.

START TRANSACTION is a synonym for the first form of BEGIN.

Examples
Execute a transaction
BEGIN
UPDATE person SET last_name 'Smith' WHERE person_id = 1;
UPDATE address SET city = 'Minneapolis' WHERE person = 1;
COMMIT;

SQL | 43

Define a stored procedure
DELIMITER //
CREATE PROCEDURE person_counter (OUT pcount INT)
BEGIN
SELECT COUNT(*) INTO pcount FROM person;
END
//
DELIMITER ;

CALL
CALL procedure [([parameter [, …]])]

Calls the specified stored procedure with the named parameters.

Examples
CALL person_counter (@pcount);
SELECT @pcount;

CHANGE MASTER
CHANGE MASTER TO param = value [, param = value] ...

Changes the parameters a slave server uses to connect to a master
during replication. You may specify any number of parameters. If
a specific parameter is not specified, MySQL will use the current
value for that parameter except MASTER_LOG_FILE and MASTER_LOG_
POS. If those are not specified and new MASTER_HOST or MASTER_PORT
values are specified, MySQL assumes you are referring to a new
server (even if using the old values) and will thus use MySQL’s
default of ‘’ and 4, respectively.

Available parameters include:

MASTER_CONNECT_RETRY
The number of attempts a slave will make to connect to a
master after a failure.

MASTER_HOST
The IP address of the master server.

MASTER_LOG_FILE
The name of the binary logfile on the master from which
replication data is read.

44 | MySQL Pocket Reference

MASTER_LOG_POS
The transaction position specified via SHOW MASTER STATUS that
helps the slave synchronize with the master.

MASTER_PASSWORD
The password for the user on the master under which replica-
tion occurs.

MASTER_PORT
If the master server is listening on a nonstandard port, this
option enables you to specify what that port is.

MASTER_SSL
Set to 1 if the master requires SSL, 0 otherwise.

MASTER_SSL_CA
The CA file for SSL support.

MASTER_SSL_CA_PATH
The directory where the CA file for SSL support is found.

MASTER_SSL_CERT
The cert file for SSL support.

MASTER_SSL_CIPHER
The cipher list in use for SSL support.

MASTER_SSL_KEY
The name of the key file for SSL support.

MASTER_USER
The name of the user on the master with REPLICATION SLAVE
permissions enabled.

RELAY_LOG_FILE
The logfile for the relay.

RELAY_LOG_POS
The synchronization position in the relay log.

Example
CHANGE MASTER TO MASTER_LOG_FILE='crm114-bin.000044',
MASTR_LOG_POS=665,
MASTER_HOST='mydb.imaginary.com', MASTER_USER='slave',
MASTER_PASSWORD='replicate';

SQL | 45

CLOSE
CLOSE cursor_name

Closes the named cursor, rendering it no longer accessible. Any
cursor not closed by the end of the compound statement in which
it was declared is automatically closed.

COMMIT
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Commits the current transaction. Chaining causes a new transac-
tion to begin immediately after a successful commit. RELEASE/NO
RELEASE indicates whether the current client should be discon-
nected after completion.

CREATE DATABASE
CREATE DATABASE [IF NOT EXISTS] dbname [create_options]

Creates a new database with the specified name. You must have
the proper privileges to create the database. Running this
command is the same as running the mysqladmin create utility.

Example
CREATE DATABASE Bank;
CREATE DATABASE statistics CHARACTER SET utf8;

CREATE EVENT
CREATE [DEFINER = { user | CURRENT_USER}] EVENT [IF NOT
EXISTS] name

 ON SCHEDULE schedule

 [ON COMPLETION [NOT] PRESERVE]

 [ENABLE | DISABLE]

 [COMMENT 'comment']

 DO statement

MySQL 5.1 only. Creates an event that will execute the specified
SQL statement in accordance with the defined event schedule.

46 | MySQL Pocket Reference

The ON SCHEDULE clause establishes the schedule on which the
event will run. There are two ways in which the define the
schedule:

AT timestamp [+ INTERVAL interval]
This schedules a one-time event to run at the specified
timestamp. You may specify a time in the future relative to the
timestamp using the INTERVAL clause. For example, you can
combine CURRENT_TIMESTAMP with an interval value to have the
event execute one hour from now.

EVERY interval [STARTS timestamp] [ENDS timestamp]
This schedules a repeating event that runs according to a
regular interval, optionally starting and ending at defined
times in the future.

With all time values, you may use the keyword CURRENT_TIMESTAMP
to specify the current date and time. The interval clause follows
the following syntax:

quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR |
MINUTE | SECOND |
YEAR_MONTH | DAY_HOUR | DAY_MINUTE | DAY_SECOND | HOUR_
MINUTE | HOUR_SECOND |
MINUTE_SECOND }

The SQL statement may be any valid SQL. You may also elect to
execute compound statements using BEGIN/END blocks in the same
way you define stored procedures.

MySQL stores the current SQL mode setting with the event. As a
result, events execute in accordance with the SQL mode in place
when the event was created—not when it is being executed.

Example
Create an event to run every month
CREATE EVENT monthly_cleaner
ON SCHEDULE EVERY 1 MONTH
DO DELETE FROM page_view;

Create an event to run one time, 1 hour from now
CREATE EVENT in_an_hour_cleaner
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
DO DELETE FROM page_view;

SQL | 47

CREATE FUNCTION
CREATE [DEFINER={user | CURRENT_USER}] FUNCTION sp_name
([params]) RETURNS type

function_definition

CREATE [AGGREGATE] FUNCTION name RETURNS return_type SONAME
library

MySQL has two distinct function concepts. The first syntax
creates a stored function. Stored functions are defined much like
stored procedures, except you can call a stored function like you
can any built-in function or library function as part of your query.
A stored function takes any number of IN parameters and issue a
return value. Library functions—more commonly referred to as
user-defined functions (UDFs)—are custom extensions of MySQL
in an external programming language. These functions can
perform practically any operation, since they are designed and
implemented by the user. The return value of the function can be
STRING, for character data; REAL, for floating point numbers; or
INTEGER, for integer numbers. MySQL will translate the return
value of the C function to the indicated type. The library file that
contains the function must be a standard shared library that
MySQL can dynamically link into the server.

Example
CREATE FUNCTION multiply RETURNS REAL SONAME mymath.so

CREATE INDEX
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX name ON table
(column[(length)], ...)

The CREATE INDEX statement is provided for compatibility with
other implementations of SQL. In older versions of SQL, this
statement does nothing. As of 3.22, this statement is equivalent to
the ALTER TABLE ADD INDEX statement. To perform the CREATE INDEX
statement, you must have INDEX privileges for the table in
question.

The UNIQUE keyword constrains the table to having only one row
in which the index columns have a given value. If the index is
multicolumn, individual column values may be repeated; the
whole index must be unique.

48 | MySQL Pocket Reference

The FULLTEXT keyword enables keyword searching on the indexed
column or columns. You may have FULLTEXT indexes only on
MyISAM tables and only for CHAR, VARCHAR, or TEXT columns.
SPATIAL indexes are also only allowed for non-NULL columns in
MyISAM tables.

You can create indexes that use only part of a column by
providing a length modifier to the column being indexed.

Example
CREATE UNIQUE INDEX TransIDX ON Translation (language,
locale, code);
Index the first 6 characters of a confirmation code:
CREATE INDEX InvIDX ON Invitation (code(6));

CREATE PROCEDURE
CREATE [DEFINER = { user | CURRENT_USER }] PROCEDURE name

 ([{IN | OUT | INOUT} parameter data_type [, …]])

 [LANGUAGE SQL] [[NOT] DETERMINISTIC]

[{CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA}]

 [SQL SECURITY { DEFINER | INVOKER}]

 [COMMENT 'comment string']

procedure_body

Creates a new stored procedure in MySQL. To use this command,
you must have CREATE ROUTINE permission. The procedure body
can be a simple SQL statement or a series of statements bound by
a BEGIN/END pair. For more on BEGIN/END, see the BEGIN command
or the section on stored procedures.

CREATE TABLE
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table

 (create_clause, ...)

 [table_options]

 [[IGNORE|REPLACE] select]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table LIKE old_table

The CREATE TABLE statement defines the structure of a table within
the database. This statement is how all MySQL tables are created.

SQL | 49

If the TEMPORARY keyword is used, the table exists only as long as
the current client connection exists, or until you explicitly drop
the table.

The IF NOT EXISTS clause tells MySQL to create the table only if
the table does not already exist. If the table does exist, nothing
happens. If the table exists and IF NOT EXISTS and TEMPORARY are
not specified, an error will occur. If TEMPORARY is specified and the
table exists but IF NOT EXISTS is not specified, the existing table
will simply be invisible to this client for the duration of the new
temporary table’s life.

The CREATE clause can either define the structure of a specific
column or define a metastructure for the column. A CREATE clause
that defines a column consists of the name of the new table
followed by any number of field definitions. The syntax of a field
definition is:

column type [NOT NULL | NULL] [DEFAULT value]
[AUTO_INCREMENT] [PRIMARY KEY] [reference]

The modifiers in this syntax are:

AUTO_INCREMENT
Indicates that the column should be automatically incre-
mented using the current greatest value for that column. Only
whole number columns may be auto-incremented.

DEFAULT value
This attribute assigns a default value to a field. If a row is
inserted into the table without a value for this field, this value
will be inserted. If a default is not defined, a null value is
inserted, unless the field is defined as NOT NULL in which case
MySQL picks a value based on the type of the field.

NOT NULL
This attribute guarantees that every entry in the column will
have some non-NULL value. Attempting to insert a NULL value
into a field defined with NOT NULL will generate an error.

NULL
This attribute specifies that the field is allowed to contain
NULL values. This is the default if neither this nor the NOT NULL
modifier is specified. Fields within an index cannot contain
the NULL modifier if they are PRIMARY KEY or SPATIAL indexes.
(The attribute will be ignored, without warning, if it does
exist in such a field.)

50 | MySQL Pocket Reference

PRIMARY KEY
This attribute automatically makes the field the primary key
(see later) for the table. Only one primary key may exist for a
table. Any field that is a primary key must also contain the NOT
NULL modifier.

REFERENCEStable [(column, . . .)] [MATCH FULL | MATCH PARTIAL] [ON
DELETE option] [ON UPDATE option]

Creates a foreign key reference. Currently applies only to the
InnoDB table type.

You may specify metastructure such as indexes and constraints via
the following clauses:

FULLTEXT (column, ...)
Since MySQL 3.23.23, MySQL has supported full text
indexing. The use and results of this search are described in
the online MySQL reference manual. To create a full text
index, use the FULLTEXT keyword:

CREATE TABLE Item (itemid INT NOT NULL PRIMARY KEY,
 name VARCHAR(25) NOT NULL,
 description TEXT NOT NULL,
 FULLTEXT (name, description)
);

INDEX [name] (column, ...)
Creates a regular index of all of the named columns (KEY and
INDEX, in this context, are synonyms). Optionally, the index
may be given a name. If no name is provided, a name is
assigned based on the first column given and a trailing
number, if necessary, for uniqueness. If a key contains more
than one column, leftmost subsets of those columns are also
included in the index. Consider the following index
definition:

INDEX idx1 (name, rank, serial);

When this index is created, the following groups of columns
will be indexed:

• name, rank, serial

• name, rank

• name

SQL | 51

KEY [name] (column, ...)
Synonym for INDEX.

PRIMARY KEY
Creates the primary key of the table. A primary key is a
special key that can be defined only once in a table. The
primary key is a UNIQUE key with the name PRIMARY. Despite its
privileged status, it behaves almost the same as every other
unique key, except it does not allow NULL values.

UNIQUE [name] (column, ...)
Creates a special index where every value contained in the
index except NULL values (and therefore in the fields indexed)
must be unique. Attempting to insert a value that already
exists into a unique index will generate an error. The
following would create a unique index of the nicknames field:

UNIQUE (nicknames);

When indexing character fields (CHAR, VARCHAR, and their
synonyms only), it is possible to index only a prefix of the
entire field. For example, the following will create an index of
the numeric field id along with the first 20 characters of the
character field address:

INDEX adds (id, address(20));

BLOB and TEXT columns require a prefix.

When performing any searches of the field address, only the
first 20 characters will be used for comparison, unless more
than one match is found that contains the same first 20 char-
acters, in which case a regular search of the data is performed.
Therefore, it can be a big performance bonus to index only
the number of characters in a text field that you know will
make the value unique. This feature is, however, dependent
on the underlying table type.

In addition, MySQL supports the following special “types,” and
the MySQL team is working on adding functionality to support
them:

FOREIGN KEY (name (column, [column2, . . .])
CHECK

52 | MySQL Pocket Reference

As of MySQL 3.23, you can specify table options at the end of a
CREATE TABLE statement. These options are:

AUTO_INCREMENT = start
Specifies the first value to be used for an AUTO_INCREMENT
column. Works with MyISAM, InnoDB, and MEMORY
tables.

AVG_ROW_LENGTH = length
An option for tables containing large amounts of variable-
length data. The average row length is an optimization hint to
help MySQL manage this data.

CHECKSUM = 0 or 1
When set to 1, this option forces MySQL to maintain a
checksum for the table to improve data consistency. This
option creates a performance penalty.

COMMENT = comment
Provides a comment for the table. The comment may not
exceed 60 characters.

DELAY_KEY_WRITE = 0 or 1
For MyISAM tables only. When set, this option delays key
table updates until the table is closed.

ENGINE = engine
Specifies the table type of the database. If the selected table
type is not available, the closest table type available is used.
For example, BDB is not available for Mac OS X. If you speci-
fied TYPE=BDB on a Mac OS X system, MySQL will instead
create the table as a MyISAM table (the default table type).
Supported table types are described later.

MAX_ROWS = rowcount
The maximum number of rows you intend to store in the
table.

MIN_ROWS = rowcount
The minimum number of rows you intend to store in the
table.

PACK_KEYS = 0 or 1
For MyISAM tables only. This option provides a performance
booster for read-heavy tables. Set to 1, this option causes
smaller keys to be created and thus slows down writes while
speeding up reads.

SQL | 53

PASSWORD = 'password'
Available only to MySQL customers with special commercial
licenses. This option uses the specified password to encrypt
the table’s .frm file. This option has no effect on the standard
version of MySQL.

ROW_FORMAT = DYNAMIC or STATIC (MyISAM) COMPACT or REDUNDANT
(InnoDB)

Defines how the rows should be stored in a table.

Finally, you can create a table and populate it straight from the
results of a SQL query:

CREATE TABLE tblname SELECT query

You must have CREATE privileges on a database to use the CREATE
TABLE statement.

Examples
Create the new empty database 'employees'
CREATE DATABASE employees;
Create a simple table
CREATE TABLE emp_data (id INT, name CHAR(50));
Create a complex table
CREATE TABLE IF NOT EXISTS emp_review (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 emp_id INT NOT NULL REFERENCES emp_data (id),
 review TEXT NOT NULL,
 INDEX (emp_id),
 FULLTEXT (review)
) AUTO_INCREMENT = 1, ENGINE=MyISAM;
Make the function make_coffee (which returns a string
value and is stored in the myfuncs.so shared library)
available to MySQL.
CREATE FUNCTION make_coffee RETURNS string SONAME
"myfuncs.so";
Create a table using the resultss from another query
CREATE TABLE Stadium
SELECT stadiumName, stadiumLocation
FROM City;

54 | MySQL Pocket Reference

CREATE TABLESPACE
CREATE TABLESPACE tablespace

 ADD DATAFILE 'file'

 USE LOGFILE GROUP logfile_group

 [EXTENT SIZE = extent_size]

 [INITIAL SIZE = initial_size]

 ENGINE = engine

Creates a tablespace on the file system to support the storage of
database tables. You can later add additional data files through
the ALTER TABLESPACE command. In MySQL 5.1, the ENGINE param-
eter must be either NDB or NDBCLUSTER.

CREATE TRIGGER
CREATE [DEFINER = { user | CURRENT_USER }]

 TRIGGER trigger _name trigger_time trigger_event

 ON table FOR EACH ROW statement

Creates a trigger in MySQL. You may define at most one trigger
per table/time/event. For example, you may define a trigger to run
on BEFORE any INSERT into the person table and another to run
AFTER an INSERT into the person table. You cannot, however,
define multiple triggers to run BEFORE an INSERT into the person
table. When activated, the trigger runs under the privileges speci-
fied in the DEFINER clause.

The trigger time defines whether the trigger should run BEFORE or
AFTER the event in question. The event may be triggered by an
INSERT, UPDATE, or DELETE.

Examples
Make sure all addresses for a person are deleted when
the person is deleted
CREATE TRIGGER zap_addresses after DELETE ON person
FOR EACH ROW
BEGIN
 DELETE FROM address WHERE person = OLD.person_id;
END

SQL | 55

CREATE USER
CREATE USER user

 [IDENTIFIED BY [PASSWORD] 'password']

 [, user [IDENTIFIED BY [PASSWORD] 'password']] ...

Creates a new user in MySQL.

CREATE VIEW
CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE |
TEMPTABLE}]

 [DEFINER = { user | CURRENT_USER }]

 [SQL SECURITY { DEFINER | INVOKER }]

 VIEW name [(columns)]

 AS select_statement

 [WITH [CASCADED | LOCAL] CHECK OPTION]

Creates a new view in MySQL based on the specified SQL query
and options. If the view already exists and OR REPLACE is specified,
the view will be replaced with the new data. Views and tables
share the same namespace, so you cannot create a view that shares
the same name as a table in the system (and vice versa).

The default names for the view’s columns are the names from the
select. Because the view column names must be unique, it gener-
ally makes sense to provide custom names. If you do so, the list of
column names must match the number of columns in your SELECT
statement.

Examples
CREATE VIEW person_view
AS
SELECT first_name, last_name, email_type, email_address
FROM person, address
WHERE person.person_id = email_address.person

56 | MySQL Pocket Reference

DECLARE
DECLARE name [,...] sql_type [DEFAULT value]

DECLARE name CURSOR FOR statement

DECLARE condition CONDITION

 FOR {SQLSTATE [VALUE] sqlstate | mysql_error_code}

DECLARE {CONTINUE | EXIT | UNDO} HANDLER

 FOR {condition | SQLSTATE [VALUE] sqlstate | mysql_error_code

 | SQLWARNING | NOTFOUND | SQLEXCEPTION } statement

The first syntax defines local variables for stored procedure
definitions.

The second syntax enables you to declare a cursor to use in a
stored procedure.

The third and fourth syntaxes define condition handlers for
specific conditions. The third syntax created a named condition
that references either a specific SQL state code or a MySQL error
code. The fourth syntax lets you define a handler to process speci-
fied conditions either based on a name you previously defined or
using other condition definitions.

DELIMITER
DELIMITER delimiter

Alters the delimiter used to end SQL statements in MySQL. The
default delimiter is the semicolon (;). The most common instance
in which you would want to change the delimiter is when defining
a stored procedure. When changing the delimiter, avoid using the
backspace (\) character as it has special meaning in MySQL.

Examples
DELIMITER //

SQL | 57

DELETE
DELETE [LOW_PRIORITY | QUICK]

 FROM table

 [WHERE clause]

 [ORDER BY column, ...] [LIMIT n]

DELETE [LOW_PRIORITY | QUICK] table1[.*], table2[.*], ...,
tablen[.*]

 FROM tablex, tabley, ..., tablez

 [WHERE clause]

DELETE [LOW_PRIORITY | QUICK]

 FROM table1[.*], table2[.*], ..., tablen[.*]

 USING references

 [WHERE clause]

Deletes rows from a table. When used without a WHERE clause, this
erases the entire table and recreates it as an empty table. With a
WHERE clause, it deletes the rows that match the condition of the
clause. This statement returns the number of rows deleted.

In versions prior to MySQL 4, omitting the WHERE clause erases
this entire table. This is done by using an efficient method that is
much faster than deleting each row individually. When using this
method, MySQL returns 0 to the user because it has no way of
knowing how many rows it deleted. In the current design, this
method simply deletes all the files associated with the table except
for the file that contains the actual table definition. Therefore, this
is a handy method of zeroing out tables with unrecoverable
corrupt data files. You will lose the data, but the table structure
will still be in place. If you really wish to get a full count of all
deleted rows, use a WHERE clause with an expression that always
evaluates to true:

DELETE FROM TBL WHERE 1 = 1;

The LOW_PRIORITY modifier causes MySQL to wait until no clients
are reading from the table before executing the delete. For
MyISAM tables, QUICK causes the table handler to suspend the
merging of indexes during the DELETE, to enhance the speed of the
DELETE.

58 | MySQL Pocket Reference

The LIMIT clause establishes the maximum number of rows that
will be deleted in a single execution.

When deleting from MyISAM tables, MySQL simply deletes refer-
ences in a linked list to the space formerly occupied by the deleted
rows. The space itself is not returned to the operating system.
Future inserts will eventually occupy the deleted space. If,
however, you need the space immediately, run the OPTIMIZE TABLE
statement or use the mysqlcheck utility.

The second two syntaxes are multitable DELETE statements that
enable the deletion of rows from multiple tables. The first is avail-
able as of MySQL 4.0.0, and the second was introduced in
MySQL 4.0.2.

In the first multitable DELETE syntax, the FROM clause does not
name the tables from which the DELETEs occur. Instead, the objects
of the DELETE command are the tables from which the deletes
should occur. The FROM clause in this syntax works like a FROM
clause in a SELECT in that it names all of the tables that appear
either as objects of the DELETE or in the WHERE clause.

I recommend the second multitable DELETE syntax because it
avoids confusion with the single table DELETE. In other words, it
deletes rows from the tables specified in the FROM clause. The
USING clause describes all the referenced tables in the FROM and
WHERE clauses. The following two DELETEs do the exact same thing.
Specifically, they delete all records from the emp_data and emp_
review tables for employees in a specific department.

DELETE emp_data, emp_review
FROM emp_data, emp_review, dept
WHERE dept.id = emp_data.dept_id
AND emp_data.id = emp_review.emp_id
AND dept.id = 32;
DELETE FROM emp_data, emp_review
USING emp_data, emp_review, dept
WHERE dept.id = emp_data.dept_id
AND emp_data.id = emp_review.emp_id
AND dept.id = 32;

You must have DELETE privileges on a database to use the DELETE
statement.

SQL | 59

Examples
Erase all of the data (but not the table itself)
for the table 'olddata'.
DELETE FROM olddata
Erase all records in the 'sales' table where the 'syear'
field is '1995'.
DELETE FROM sales WHERE syear=1995

DESCRIBE
DESCRIBE table [column]

DESC table [column]

Gives information about a table or column. While this statement
works as advertised, its functionality is available (along with much
more) in the SHOW statement. This statement is included solely for
compatibility with Oracle SQL. The optional column name can
contain SQL wildcards, in which case information will be
displayed for all matching columns.

Example
Describe the layout of the table 'messy'
DESCRIBE messy
Show the information about any columns starting
with 'my_' in the 'big' table.
Remember: '_' is a wildcard, too, so it must be
escaped to be used literally.
DESC big my_%

DESC

Synonym for DESCRIBE.

DO
DO expression [, expression, ...]

Executes expressions without returning any results.

60 | MySQL Pocket Reference

DROP DATABASE
DROP DATABASE [IF EXISTS] name

Permanently remove a database from MySQL. Once you execute
this statement, none of the tables or data that made up the data-
base are available. All support files for the database are deleted
from the filesystem. The number of files deleted will be returned
to the user. This statement is equivalent to running the
mysqladmin drop utility. As with running mysqladmin, you must
be the administrative user for MySQL (usually root or mysql) to
perform this statement. You may use the IF EXISTS clause to
prevent any error message that would result from an attempt to
drop a nonexistent database.

DROP EVENT
DROP EVENT [IF EXISTS] name

Drops the specified event from MySQL. You must have the EVENT
privilege to be able to drop an event.

DROP FUNCTION
DROP FUNCTION [IF EXISTS] name

Will remove a user-defined or stored function from the running
MySQL server process. This does not actually delete the library
file containing the function. You may add the function again at
any time using the CREATE FUNCTION statement. In the current
implementation, DROP FUNCTION simply removes the function from
the function table within the MySQL database. This table keeps
track of all active functions.

DROP INDEX
DROP INDEX idx_name ON tbl_name

Provides compatibility with other SQL implementations. In older
versions of MySQL, this statement does nothing. As of 3.22, this
statement is equivalent to ALTER TABLE ... DROP INDEX. To perform
the DROP INDEX statement, you must have SELECT, INSERT, DELETE,
UPDATE, CREATE, and DROP privileges for the table in question.

SQL | 61

DROP PROCEDURE
DROP PROCEDURE [IF EXISTS] name

Removes the specified procedure from the database. You must
have ALTER ROUTINE permissions for the procedure in order to
execute this call.

DROP TABLE
DROP TABLE [IF EXISTS] name [, name2, ...] [RESTRICT | CASCADE]

Will erase an entire table permanently. In the current implementa-
tion, MySQL simply deletes the files associated with the table. As
of 3.22, you may specify IF EXISTS to make MySQL not return an
error if you attempt to remove a table that does not exist. The
RESTRICT and CASCADE keywords do nothing; they exist solely for
ANSI compatibility. You must have DELETE privileges on the table
to use this statement.

DROP TABLESPACE
DROP TABLESPACE tablespace ENGINE = engine

Drops the specified tablespace. The tablespace must not include
any data files. You should therefore make sure you remove all
data files first by using the ALTER TABLESPACE command.

DROP TRIGGER
DROP TRIGGER [IF EXISTS] trigger

Drops the specified trigger from MySQL. When upgrading from
MySQL 5.0.10 and earlier to any later version, you must first drop
your triggers before the upgrade and then re-add them.

DROP USER
DROP USER user

Drops a user from MySQL along with his permissions.

62 | MySQL Pocket Reference

DROP VIEW
DROP VIEW [IF EXISTS] view [RESTRICT | CASCADE]

Drops the specified view from the system. The RESTRICT and
CASCADE options are ignored in MySQL.

EXPLAIN
EXPLAIN table_name

EXPLAIN [EXTENDED] query

Used with a table name, this command is an alias for SHOW COLUMNS
FROM table_name.

Used with an SQL statement, this command displays verbose
information about the order and structure of a SELECT statement.
This can be used to see where keys are not being used efficiently.
This information is returned as a result set with the following
columns:

table
The name of the table referenced by the result set row
explaining the query.

type
The type of join that will be performed.

possible_keys
Indicates which indexes MySQL could use to build the join. If
this column is empty, there are no relevant indexes and you
should probably build some to enhance performance.

key
Indicates which index MySQL decided to use.

key_len
Provides the length of the key MySQL decided to use for the
join.

ref
Describes which columns or constants were used with the key
to build the join.

rows
Indicates the number of rows MySQL estimates it will need to
examine to perform the query.

SQL | 63

Extra
Additional information indicating how MySQL will perform
the query.

Example
EXPLAIN SELECT customer.name, product.name FROM customer,
product, purchases
WHERE purchases.customer=customer.id AND purchases.
product=product.id

FETCH
FETCH cursor_name INTO var [,...]

Fetches the next row of data from an open cursor and advances
the cursor one row. To detect when no more rows are available,
you need to set up a handler to catch SQL state 02000 (NO
DATA).

FLUSH
FLUSH option[, option...]

Flushes or resets various internal processes depending on the
options given. You must have RELOAD privileges to execute this
statement. The option can be any of the following:

DES_KEY_FILE
Reloads the DES keys from the file originally specified with
the --des-key-file option.

HOSTS
Empties the cache table that stores hostname information for
clients. This should be used if a client changes IP addresses,
or if there are errors related to connecting to the host.

LOGS
Closes all the logfiles and reopens them. This can be used if a
logfile has changed its inode number. If no specific extension
has been given to the binary log, a new binary log will be
opened with the extension incremented by one.

PRIVILEGES
Reloads all the internal MySQL permissions grant tables. This
must be run for any changes to the tables to take effect unless
those changes occurred through a GRANT/REVOKE statement.

64 | MySQL Pocket Reference

QUERY CACHE
Defragments the query cache to improve memory use, but it
does not delete queries from the cache.

STATUS
Resets the status variables that keep track of the current state
of the server.

TABLE table

TABLES table, table2, ..., tablen
Flushes only the specified tables.

TABLES [WITH READ LOCK]
Closes all currently open tables and flushes any cached data
to disk. With a read lock, it acquires a read lock that will not
be released until UNLOCK TABLES is issued

GRANT
GRANT privilege [(column, ...)] [, privilege [(column, ...)]
...]

ON [{TABLE | FUNCTION | PROCEDURE}] {table

| * | *.* | database.*}

TO user [IDENTIFIED BY 'password'] [, user [IDENTIFIED BY
'password'] ...]

[REQUIRE [{NONE | SSL | X509 | CIPHER cipher [AND] [ISSUER
issuer [AND]]

[SUBJECT subject]]]

[WITH [GRANT OPTION]

[MAX_QUERIES_PER_HOUR limit]

 [MAX_UPDATES_PER_HOUR limit]

[MAX_CONNECTIONS_PER_HOUR limit]

[MAX_USER_CONNECTIONS limit]]

In versions prior to MySQL 3.22.11, the GRANT statement was
recognized but did nothing. In current versions, GRANT is func-
tional. This statement enables access rights to a user (or users).
Access can be granted per database, table or individual column.
The table can be given as a table within the current database; use
* to affect all tables within the current database, *.* to affect all
tables within all databases, or database.* to affect all tables within
the given database.

SQL | 65

The following privileges are currently supported:

ALL PRIVILEGES/ALL
Assigns all privileges available to the user under which you
are performing this GRANT except FILE, PROCESS, RELOAD, and
SHUTDOWN.

ALTER
To alter the structure of tables.

ALTER ROUTINE
To make changes to a stored procedure or function.

CREATE
To create new tables.

CREATE ROUTINE
To create a stored procedure or function.

CREATE TEMPORARY TABLES
To create temporary tables.

CREATE USER
To create new users.

CREATE VIEW
To create views.

DELETE
To delete rows from tables.

DROP
To delete entire tables.

EVENT
To create scheduler events.

EXECUTE
To execute stored procedures and functions.

FILE
To create and remove entire databases, as well as manage
logfiles.

GRANT OPTION
To grant privileges to other users.

INDEX
To create and delete indexes from tables.

INSERT
To insert data into tables.

66 | MySQL Pocket Reference

LOCK TABLES
To issue LOCK TABLES on tables for which you have a SELECT
privilege.

PROCESS
To view process threads.

REFERENCES
Not implemented (yet).

RELOAD
To refresh various internal tables (see the FLUSH statement).

REPLICATION CLIENT
To ask where slave and master servers are.

REPLICATION SLAVE
To enable a slave to read events from the master binary
logfile.

SELECT
To read data from tables.

SHOW DATABASES
To see all databases on the server.

SHOW VIEW
To execute SHOW CREATE VIEW.

SHUTDOWN
To shut down the database server.

SUPER
To execute a variety of administrative commands and to
bypass max_connections.

TRIGGER
To create or drop triggers.

UPDATE
To alter rows within tables.

USAGE
No privileges at all.

The user variable is of the form user@hostname. Either the user or
the hostname can contain SQL wildcards. When wildcards are
used, either the whole name must be quoted, or just the parts
with the wildcards (e.g., joe@"%.com ” and “joe@%.com” are both
valid).* A user without a hostname is considered to be the same as
user@"%".

SQL | 67

If you have a global GRANT privilege, you may specify an optional
INDENTIFIED BY modifier. If the user in the statement does not
exist, it will be created with the given password. Otherwise, the
existing user will have her password changed.

The GRANT privilege is given to a user with the WITH GRANT OPTION
modifier. If this is used, the user may grant any privilege she has
to another user. You may also chose to limit the number of
queries made by a particular user ID through the MAX_QUERIES_
PER_HOUR option.

Support for secure SSL encryptions, as well as X.509 authentica-
tion, exists in MySQL. The REQUIRE clause enables you to require a
user to authenticate in one of these manners and identify the
credentials to be used. Just specifying REQUIRE SSL tells MySQL
that the user can connect to MySQL using only an SSL connec-
tion. Similarly, REQUIRE X509 requires the user to authenticate
using an X.509 certificate. You can place the following restric-
tions on the connection:

ISSUER issuer
Demands that the certificate have the issuer specified.

SUBJECT subject
Not only does the user have to have a valid certificate, but it
must have a certificate for the specified subject.

CIPHER cipher
Enables MySQL to enforce a minimum encryption strength.
The connection must use one of the ciphers specified here.

Examples
Give full access to joe@carthage for the Account table
GRANT ALL ON bankdb.Account TO joe@carthage;
Give full access to jane@carthage for the
Account table and create a user ID/password for her
GRANT ALL ON bankdb.Account TO jane@carthage IDENTIFIED BY
'mypass';
Give joe the ability
to SELECT from any table on the webdb database
GRANT SELECT ON webdb.* TO joe;

* In fact, the rules governing when you need to use quotes are more com-
plex. As a good rule of thumb, whenever you have nonalphanumeric char-
acters, quote them.

68 | MySQL Pocket Reference

Give joe on the local machine access to everything in
webdb but
require some special security
GRANT ALL on webdb.* TO joe@localhost
IDENTIFIED BY 'mypass'
REQUIRE SUBJECT 'C=US, ST=MN, L=Minneapolis, O=My Cert,
CN=Joe Friday/Email=joe@localhost'
AND ISSUER='C=US, ST=MN, L=Minneapolis, O=Imaginet,
CN=Joe Friday/Email=joe@localhost'
AND CIPHER='RSA-DES-3DES-SHA';

INSERT
INSERT [DELAYED | LOW_PRIORITY] [IGNORE]

 [INTO] table [(column, ...)]

 VALUES (values [, values...])

 [ON DUPLICATE KEY UPDATE col=expression]

INSERT [DELAYED | LOW_PRIORITY] [IGNORE]

 [INTO] table [(column, ...)]

 SELECT ...

[ON DUPLICATE KEY UPDATE col=expression]

INSERT [DELAYED | LOW_PRIORITY] [IGNORE]

 [INTO] table

 SET column=value, column=value,...

[ON DUPLICATE KEY UPDATE col=expression]

Inserts data into a table. The first form of this statement simply
inserts the given values into the given columns. Columns in the
table that are not given values are set to their default values or
NULL. The second form takes the results of a SELECT query and
inserts them into the table. The third form is simply an alternate
version of the first form that more explicitly shows which columns
correspond with which values. If the DELAYED modifier is present in
the first form, all incoming SELECT statements will be given
priority over the insert, which will wait until the other activity has
finished before inserting the data. In a similar way, using the LOW_
PRIORITY modifier with any form of INSERT causes the insertion to
be postponed until all other operations from other clients have
been finished.

SQL | 69

Starting with MySQL 3.22.5, it is possible to insert more than one
row into a table at a time. This is done by adding additional value
lists to the statement separated by commas.

If ON DUPLICATE KEY UPDATED is used, an UPDATE is performed on the
existing row when an INSERT would duplicate that row due to a
key match.

You must have INSERT privileges to use this statement.

Examples
Insert a record into the 'people' table.
INSERT INTO people (name, rank, serial_number)
VALUES ('Bob Smith', 'Captain', 12345);
Copy all records from 'data' that are older than a
certain date into
'old_data'. This would usually be followed by deleting
the old data from
'data'.
INSERT INTO old_data (id, date, field)
SELECT (id, date, field)
FROM data
WHERE date < 87459300;
Insert 3 new records into the 'people' table.
INSERT INTO people (name, rank, serial_number)
VALUES ('Tim O''Reilly', 'General', 1),
 ('Andy Oram', 'Major', 4342),
 ('Randy Yarger', 'Private', 9943);
Update on duplicate key
INSERT INTO people (person_id, first_name, last_name)
VALUES (1, 'George', 'Reese')
ON DUPLICATE KEY UPDATE people SET person_id = person_id +
1 WHERE person_id = 1;

KILL
KILL [CONNECTION | QUERY] thread_id

KILL CONNECTION is the same as KILL with no modifier.

Terminates the specified thread. The thread ID numbers can be
found using SHOW PROCESSLIST. Killing threads owned by users
other than yourself requires PROCESS privilege. In MySQL 4.x, this
privilege is now the SUPER privilege.

70 | MySQL Pocket Reference

Example
Terminate thread 3
KILL 3

LOAD
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE file
[REPLACE|IGNORE]

 INTO TABLE table [delimiters] [(columns)]

Reads a text file and inserts its data into a database table. This
method of inserting data is much quicker than using multiple
INSERT statements. Although the statement may be sent from all
clients like any other SQL statement, the file referred to in the
statement is assumed to be located on the server unless the LOCAL
keyword is used. If the filename does not have a fully qualified
path, MySQL looks under the directory of the current database
for the file.

With no delimiters specified, LOAD DATA INFILE will assume that
the file is tab delimited with character fields, special characters
escaped with backslashes (\), and lines terminated with newline
characters.

In addition to the default behavior, you may specify your own
delimiters using the following keywords. Delimiters apply to all
tables in the statement.

FIELDS TERMINATED BY 'c'
Specifies the character used to delimit the fields. The escape
codes listed earlier in the section on literals can be used to
designate special characters. This value may contain more than
one character. For example, FIELDS TERMINATED BY "," denotes a
comma-delimited file and FIELDS TERMINATED BY "\t" denotes
tab delimited. The default value is tab delimited.

FIELDS ENCLOSED BY 'c'
Specifies the character used to enclose character strings. For
example, FIELD ENCLOSED BY “''” would mean that a line
containing “one, two”, “other”, “last” would be taken to have
three fields:

• one, two

• other

• last

SQL | 71

The default behavior is to assume that no quoting is used in
the file.

FIELDS ESCAPED BY 'c'
Specifies the character used to indicate that the next char-
acter is not special, even though it would usually be a special
character. For example, with FIELDS ESCAPED BY '^' a line
consisting of First,Second^,Third,Fourth would be parsed as
three fields: “First”, “Second,Third”, and “Fourth”. The
exceptions to this rule are the null characters. Assuming the
FIELDS ESCAPED BY value is a backslash, \0 indicates an ASCII
NUL (character number 0) and \N indicates a MySQL NULL
value. The default value is the backslash character. Note that
MySQL itself considers the backslash character to be special.
Therefore, to indicate backslash in that statement, you must
backslash the backslash like this: FIELDS ESCAPED BY '\\'.

LINES TERMINATED BY 'c'
Specifies the character that indicates the end of a new record.
This value can contain more than one character. For example,
with LINES TERMINATED BY '.', a file consisting of a,b,c.
d,e,f.g,h,k would be parsed as three separate records, each
containing three fields. The default is the newline character.
This means that by default, MySQL assumes each line is a
separate record.

IGNORE number LINES
Ignores the specified number of lines before it loads.

By default, if a value read from the file is the same as an existing
value in the table for a field that is part of a unique key, an error is
given. If the REPLACE keyword is added to the statement, the entire
row from the table will be replaced with values from the file.
Conversely, the IGNORE keyword causes MySQL to ignore the new
value and keep the old one.

The word NULL encountered in the data file is considered to indi-
cate a null value unless the FIELDS ENCLOSED BY character encloses
it, or if no FIELDS ENCLOSED BY clause is specified.

Using the same character for more than one delimiter can confuse
MySQL. For example, FIELDS TERMINATED BY ',' ENCLOSED BY ','
would produce unpredictable behavior.

If a list of columns is provided, the data is inserted into those
particular fields in the table. If no columns are provided, and the

72 | MySQL Pocket Reference

fields must be in the same order as the fields are defined in the
table. Extra fields are ignored, and any missing fields are assigned
default values.

You must have SELECT and INSERT privileges on the table to use
this statement.

Example
Load in the data contained in 'mydata.txt' into the
table 'mydata'. Assume
that the file is tab delimited with no quotes
surrounding the fields.
LOAD DATA INFILE 'mydata.txt' INTO TABLE mydata
Load in the data contained in 'newdata.txt' Look for two
comma delimited
fields and insert their values into the fields 'field1'
and 'field2' in
the 'newtable' table.
LOAD DATA INFILE 'newdata.txt'
INTO TABLE newtable
FIELDS TERMINATED BY ','
(field1, field2)

LOCK
LOCK TABLES name

 [AS alias] {READ | [READ LOCAL] | [LOW_PRIORITY] WRITE}

[, name2 [AS alias] {READ | [READ LOCAL] | LOW_PRIORITY]
WRITE, ...]

Locks a table for the use of a specific thread. This command is
generally used to emulate transactions. If a thread creates a READ
lock, all other threads may read from the table, but only the
controlling thread can write to the table. If a thread creates a WRITE
lock, no other thread may read from or write to the table.

Example
Lock tables 'table1' and 'table3' to prevent updates,
and block all access
to 'table2'. Also create the alias 't3' for 'table3' in
the current thread.
LOCK TABLES table1 READ, table2 WRITE, table3 AS t3 READ

SQL | 73

OPEN
OPEN cursor_name

Opens the previously declared cursor specified in the statement.

OPTIMIZE
OPTIMIZE TABLE name

Recreates a table, eliminating any wasted space and sorting any
unsorted index pages. Also updates any statistics that are not
currently up to date. This task is performed by creating the opti-
mized table as a separate, temporary table and using it to replace
the current table. This command currently works only for
MyISAM, InnoDB, and ARCHIVE tables. If you want the syntax
to work no matter what table type you use, you should run mysqld
with --skip-new or --safe-mode on. Under these circumstances,
OPTIMIZE TABLE is an alias for ALTER TABLE.

Example
OPTIMIZE TABLE mytable

RELEASE SAVEPOINT
RELEASE SAVEPOINT savepoint

Deletes the specified save point.

RENAME DATABASE
RENAME DATABASE original_name TO new_name

Renames the specified database. You must go back and manually
alter any permissions granted under the old name as they will not
be automatically converted to the new name.

RENAME SCHEMA is a synonym for this command.

RENAME USER
RENAME USER original_name TO new_name

Renames the specified user. If you specify only the name part of
the user, '%' will be added for the host name part.

74 | MySQL Pocket Reference

REPLACE
REPLACE [DELAYED | LOW_PRIORITY] INTO table [(column, ...)]
VALUES (value, ...) REPLACE [DELAYED | LOW_PRIORITY] INTO table
[(column, ...)] SELECT select_clause REPLACE [DELAYED | LOW_
PRIORITY] INTO table SET column=value, column=value, ...

Inserts data into a table, replacing any old data that conflicts. This
statement is identical to INSERT except that if a value conflicts with
an existing unique key, the new value replaces the old one. The
first form of this statement simply inserts the given values into the
given columns. Columns in the table that are not given values are
set to their default values or to NULL. The second form takes the
results of a SELECT query and inserts them into the table. The final
form inserts specific values using a syntax similar to an UPDATE
statement, but it always replaces the entire row—not just the
specified values.

Examples
Insert a record into the 'people' table.
REPLACE INTO people (name, rank, serial_number)
VALUES ('Bob Smith', 'Captain', 12345)
Copy all records from 'data' that are older than a
certain date into
'old_data'. This would usually be followed by deleting
the old data from
'data'.
REPLACE INTO old_data (id, date, field)
SELECT (id, date, field)
FROM data
WHERE date < 87459300

REVOKE
REVOKE privilege [(column, ...)] [, privilege [(column, ...) ...]

ON table

FROM user

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user ...]

Removes a privilege from a user. The values of privilege, table,
and user are the same as for the GRANT statement. You must have
the GRANT privilege to be able to execute this statement. See the
GRANT statement for more details.

SQL | 75

ROLLBACK
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE] [TO SAVEPOINT
savepoint]

Rolls back the current transaction, undoing any work since the
most recent BEGIN (or, if chaining is in use, since the last COMMIT or
ROLLBACK). If a save point is specified, the transaction is moved
back to the identified save point. Any save points after the speci-
fied save point are deleted.

SAVEPOINT
SAVEPOINT savepoint

Defines a save point for a transaction. You can later use the
ROLLBACK TO SAVEPOINT syntax of the ROLLBACK command to roll
the transaction back to the point identified by this save point.

SELECT
SELECT

 [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT]

 [SQL_BUFFER_RESULT] [SQL_CACHE | SQL_NO_CACHE]

 [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY] [DISTINCT | |
 DISTINCTROW | ALL]

 column [[AS] alias][, ...]

 [INTO {OUTFILE 'filename' delimiters | DUMPFILE 'filename' |
 @variable}]

 [FROM table [[AS] alias]

 [WHERE condition [, ...]]

 [GROUP BY {column | expression | position} [ASC | DESC] [, ...]
 [WITH ROLLUP]]

 [HAVING condition]

 [ORDER BY {column | expression | position} [ASC | DESC] [, ...]]

 [LIMIT {offset | row_limit | row_limit OFFSET offset}]

 [PROCEDURE name (arg [, ...])]

 [FOR UPDATE | LOCK IN SHARE MODE]

 [UNION [ALL] select substatement]

Retrieves data from a database. The SELECT statement is the
primary method of reading data from database tables.

76 | MySQL Pocket Reference

If the DISTINCT keyword is present, only one row of data will be
output for every group of rows that is identical. The ALL keyword
is the opposite of DISTINCT and displays all returned data. The
default behavior is ALL. DISTINCT and DISTINCTROWS are synonyms.

MySQL provides several extensions to the basic ANSI SQL syntax
that help modify how your query runs:

HIGH_PRIORITY
Increases the priority with which the query is run, even to the
extent of ignoring tables waiting to be locked for update. You
can cause database updates to grind to a halt if you use this
option with long-running queries.

STRAIGHT_JOIN
If you specify more than one table, MySQL will automatically
join the tables so that you can compare values between them.
In cases where MySQL does not perform the join in an effi-
cient manner, you can specify STRAIGHT_JOIN to force MySQL
to join the tables in the order you enter them in the query.

SQL_BUFFER_RESULT
Forces MySQL to store the result in a temporary table.

SQL_CALC_FOUND_ROWS
Enables you to find out how many rows the query would
return without a LIMIT clause. You can retrieve this value
using SELECT FOUND_ROWS().

SQL_BIG_RESULT

SQL_SMALL_RESULT
Both clauses tell MySQL what size you think the result set
will be for use with GROUP BY or DISTINCT. With small results,
MySQL will place the results in fast temporary tables instead
of using sorting. Big results, however, will be placed in disk-
based temporary tables and use sorting.

SQL_CACHE

SQL_NO_CACHE
SQL_NO_CACHE dictates that MySQL should not store the query
results in a query cache. SQL_CACHE, on the other hand, indi-
cates that the results should be stored in a query cache if you
are using cache on demand (SQL_QUERY_CACHE_TYPE=2).

SQL | 77

The selected columns’ values can be any one of the following:

Aliases
Any complex column name or function can be simplified by
creating an alias for it. The value can be referred to by its alias
anywhere else in the SELECT statement (e.g., SELECT DATE_
FORMAT(date,"%W, %M %d %Y") as nice_date FROM calendar).
You cannot use aliases in WHERE clauses, as their values are not
be calculated at that point.

Column names
These can be specified as column, table.column or database.
table.column. The longer forms are necessary only to disam-
biguate columns with the same name, but can be used at any
time (e.g., SELECT name FROM people; SELECT mydata.people.
name FROM people).

Functions
MySQL supports a wide range of built-in functions such as
SELECT COS(angle) FROM triangle (see later). In addition, user-
defined functions can be added at any time using the CREATE
FUNCTION statement.

By default, MySQL sends all output to the client that sent the
query. It is possible however, to have the output redirected to a
file. In this way you can dump the contents of a table (or selected
parts of it) to a formatted file that can either be human readable,
or formatted for easy parsing by another database system.

The INTO OUTFILE 'filename' modifier is the means in which
output redirection is accomplished. With this, the results of the
SELECT query are put into filename. The format of the file is deter-
mined by the delimiters arguments, which are the same as the
LOAD DATA INFILE statement with the following additions:

• The OPTIONALLY keyword may be added to the FIELDS ENCLOSED
BY modifier. This causes MySQL to treat enclosed data as
strings and nonenclosed data as numeric.

• Removing all field delimiters (i.e., FIELDS TERMINATED BY ''
ENCLOSED BY '') will cause a fixed-width format to be used.
Data will be exported according to the display size of each
field. Many spreadsheets and desktop databases can import
fixed-width format files. You must have FILE permissions to
execute this command.

78 | MySQL Pocket Reference

The default behavior with no delimiters is to export tab delimited
data using backslash (\) as the escape character and to write one
record per line. You may optionally specify a DUMPFILE instead of
an OUTFILE. This syntax will cause a single row to be placed into
the file with no field or line separators. It is used for outputting
binary fields.

The list of tables to join may be specified in the following ways:

Table1, Table2, Table3, . . .
This is the simplest form. The tables are joined in the manner
that MySQL deems most efficient. This method can also be
written as Table1 JOIN Table2 JOIN Table3,... The CROSS
keyword can also be used, but it has no effect (e.g., Table1
CROSS JOIN Table2) Only rows that match the conditions for
both columns are included in the joined table. For example,
SELECT * FROM people, homes WHERE people.id=homes.owner
would create a joined table containing the rows in the people
table that have id fields that match the owner field in the homes
table.

Like values, table names can also be aliased (e.g., SELECT t1.
name, t2.address FROM long_table_name t1, longer_table_
name t2).

As of MySQL 5, it is better to use the standard ANSI SQL
INNER JOIN syntax than this kind of join.

Table1 INNER JOIN Table2 {[ON expr] | [USING (columns)]}
Performs a standard inner join. This method is identical to the
method just described, except you specify the USING clause to
describe the join columns instead of a WHERE clause.

Table1 STRAIGHT_JOIN Table2
This is identical to the first method, except that the left table
is always read before the right table. This should be used if
MySQL performs inefficient sorts by joining the tables in the
wrong order.

Table1 LEFT [OUTER] JOIN Table2 ON expression
This checks the right table against the clause. For each row
that does not match, a row of NULLs is used to join with the
left table. Using the previous example, SELECT * FROM people,
homes LEFT JOIN people, homes ON people.id=homes.owner, the
joined table would contain all the rows that match in both
tables, as well as any rows in the people table that do not have
matching rows in the homes table; NULL values would be used

SQL | 79

for the homes fields in these rows. The OUTER keyword is
optional and has no effect.

Table1 LEFT [OUTER] JOIN Table2 USING (column[, column2 . . .])
This joins the specified columns only if they exist in both
tables (e.g., SELECT * FROM old LEFT OUTER JOIN new USING (id)).

Table1 NATURAL LEFT [OUTER] JOIN Table2
This joins only the columns that exist in both tables. This
would be the same as using the previous method and speci-
fying all the columns in both tables (e.g., SELECT rich_people.
salary, poor_people.salary FROM rich_people NATURAL LEFT
JOIN poor_people).

{OJ Table1 LEFT OUTER JOIN Table2 ON clause }
This is identical to Table1 LEFT JOIN Table2 ON clause and is
included only for ODBC compatibility.

MySQL also supports right joins using the same syntax as left
joins—except for the OJ syntax. For portability, however, it is
recommended that you formulate your joins as left joins.

If no constraints are provided, SELECT returns all the data in the
selected tables. You may also optionally tell MySQL whether to
use or ignore specific indexes on a join using USE INDEX and IGNORE
INDEX.

The search constraints can contain any of the following
substatements:

WHERE statement
The WHERE statement construct is the most common way of
searching for data in SQL. This statement is usually a compar-
ison of some type but can also include any of the following
functions, except for the aggregate functions. Named values,
such as column names and aliases, and literal numbers and
strings can be used in the statement.

FOR UPDATE
Creates a write lock on the rows returned by the query. This
constraint is useful if you intend to immediately modify the
query data and update the database.

LOCK IN SHARE MODE
Creates a shared mode lock on the read so that the query
returns no data that is part of an uncommitted transaction.

80 | MySQL Pocket Reference

GROUP BY column[, column2,...]
This gathers all the rows that contain data with some value
from a certain column. This allows aggregate functions to be
performed on the columns (e.g., SELECT name,MAX(age) FROM
people GROUP BY name). The column value may be an unsigned
integer representing a column number or a formula, instead of
an actual column name.

HAVING clause
This is the same as a WHERE clause except it is performed upon
the data that has already been retrieved from the database.
The HAVING statement is a good place to perform aggregate
functions on relatively small sets of data that have been
retrieved from large tables. This way, the function does not
have to act upon the whole table, only the data that has
already been selected (e.g., SELECT name,MAX(age) FROM people
GROUP BY name HAVING MAX(age)>80).

ORDER BY column [ASC|DESC][, column2 [ASC|DESC],...]
Sorts the returned data using the given column(s). If DESC is
present, the data is sorted in descending order, otherwise
ascending order is used (e.g., SELECT name, age FROM people
ORDER BY age DESC). Ascending order can also be explicitly
stated with the ASC keyword. As with GROUP BY, the column
value may be an unsigned integer or a formula (though not an
aggregate), instead of the column name.

LIMIT [start,] rows
Returns only the specified number of rows. If the start value
is supplied, that many rows are skipped before the data is
returned. The first row is number 1 (e.g., SELECT url FROM
links LIMIT 5,10 returns URLs numbered 5 through 14).

PROCEDURE name ([arg_list])
In early versions of MySQL, this does not do anything. It was
provided to make importing data from other SQL servers
easier. Starting with MySQL 3.22, this substatement lets you
specify a procedure that modifies the query result before
returning it to the client.

SELECT supports functions. MySQL defines several built-in func-
tions that can operate on the data in the table, returning the
computed value(s) to the user. With some functions, the value
returned depends on whether the user wants to receive a numer-
ical or string value. This is regarded as the “context” of the

SQL | 81

function. When selecting values to be displayed to the user, only
text context is used, but when selecting data to be inserted into a
field, or to be used as the argument of another function, the
context depends upon what the receiver is expecting. For
instance, selecting data to be inserted into a numerical field will
place the function into a numerical context.

MySQL 4.0 introduced support for unions. A UNION clause enables
the results from two SELECT statements to be joined as a single
result set. The two queries should have columns that match in
type and number. Matching in type allows for columns to have
types that are convertible.

MySQL 5.0 added the ability to create stored procedures and
leverage the SELECT statement in those stored procedures. You can
place result set data into stored procedure variables using the
SELECT INTO @variable variant.

Examples
Find all names in the 'people' table where the 'state'
Sfield is 'MI'.
SELECT name FROM people WHERE state='MI'
Display all of the data in the 'mytable' table.
SELECT * FROM mytable
Create a stored procedure that prints the number of rows
in a table
CREATE PROCEDURE counter (OUT p INT)
BEGIN
 SELECT COUNT(*) INTO p FROM account;
END;

SET
SET OPTION SQL_OPTION=value

Defines an option for the current session. Values set by this state-
ment are not in effect anywhere but the current connection, and
they disappear at the end of the connection. The following
options are currently supported:

AUTOCOMMIT=0 or 1
When set to the default value of 1, each statement sent to the
database is automatically committed unless preceded by
BEGIN. Otherwise, you need to send a COMMIT or ROLLBACK to
end a transaction.

82 | MySQL Pocket Reference

CHARACTER SET charsetname or DEFAULT
Changes the character set used by MySQL. Specifying DEFAULT
will return to the original character set.

LAST_INSERT_ID=number
Determines the value returned from the LAST_INSERT_ID()
function.

PASSWORD=PASSWORD('password')
Sets the password for the current user.

PASSWORD FOR user = PASSWORD('password')
Sets the password for the specified user.

SQL_AUTO_IS_NULL= 0 or 1
When set to the default value of 1, you can find the last
inserted row in a table with WHERE auto_increment_column IS
NULL.

SQL_BIG_SELECTS=0 or 1
Determines the behavior when a large SELECT query is encoun-
tered. If set to 1, MySQL will abort the query with an error, if
the query would probably take too long to compute. MySQL
decides that a query will take too long if it will have to
examine more rows than the value of the max_join_size server
variable. The default value of the variable is 0, which allows
all queries.

SQL_BIG_TABLES=0 or 1
Determines the behavior of temporary tables (usually gener-
ated when dealing with large data sets). If this value is 1,
temporary tables are stored on disk, which is slower than
primary memory but can prevent errors on systems with low
memory. The default value is 0, which stores temporary tables
in RAM.

SQL_BUFFER_RESULT=0 or 1
A value of 1 is the same as specifying SQL_BUFFER_RESULT for
every SELECT statement. It forces MySQL to place results into
a temporary table.

SQL_LOG_OFF=0 or 1
When set to 1, turns off standard logging for the current
session. This does not stop logging to the ISAM log or the
update log. You must have PROCESS LIST (SUPER as of MySQL
4.0.2) privileges to use this option. The default is 0, which
enables standard logging.

SQL | 83

SQL_LOW_PRIORITY_UPDATES=0 or 1
Tells MySQL to wait until no pending SELECT or LOCK TABLE
READ is occurring on an affected table before executing a write
statement.

SQL_MAX_JOIN_SIZE=value or DEFAULT
Prohibits MySQL from executing queries that will likely need
more than the specified number of row combinations. If you
set this value to anything other than the default, it will cause
SQL_BIG_SELECTS to be reset. Resetting SQL_BIG_SELECTS will
cause this value to be ignored.

SQL_QUERY_CACHE_TYPE=value
Tells MySQL not to cache or retrieve results (0 or OFF), to
cache everything but SQL_NO_CACHE queries (1 or ON), or to
cache only SQL_CACHE queries (2 or DEMAND).

SQL_SAFE_UPDATES=0 or 1
Prevents accidental executions of UPDATE or DELETE statements
that do not have a WHERE clause or LIMIT set.

SQL_SELECT_LIMIT=number
The maximum number of records returned by a SELECT query.
A LIMIT modifier in a SELECT statement overrides this value.
The default behavior is to return all records.

SQL_UPDATE_LOG=0 or 1
When set to 0, turns off update logging for the current session.
This does not affect standard logging or ISAM logging. You
must have PROCESS LIST (SUPER as of MySQL 4.0.2) privileges
to use this option. The default is 1, which enables update
logging.

TIMESTAMP=value or DEFAULT
Determines the time used for the session. This time is logged
to the update log and will be used if data is restored from the
log. Specifying DEFAULT will return to the system time.

Example
Turn off logging for the current connection.
SET OPTION SQL_LOG_OFF=1

84 | MySQL Pocket Reference

SHOW
SHOW [FULL] COLUMNS FROM table [FROM database] [LIKE clause]

SHOW DATABASES [LIKE clause]

SHOW FIELDS FROM table [FROM database] [LIKE clause]

SHOW GRANTS FOR user

SHOW INDEX FROM table [FROM database]

SHOW KEYS FROM table [FROM database]

SHOW LOGS

SHOW MASTER STATUS

SHOW MASTER LOGS

SHOW [FULL] PROCESSLIST

SHOW SLAVE STATUS

SHOW STATUS [LIKE clause]

SHOW TABLE STATUS [FROM database [LIKE clause]]

SHOW [OPEN] TABLES [FROM database] [LIKE clause]

SHOW VARIABLES [LIKE clause]

Displays a variety of information about the MySQL system. This
statement can be used to examine the status or structure of almost
any part of MySQL, including many objects not shown in this list.

Examples
Show the available databases
SHOW DATABASES;
Display information on the indexes on table 'bigdata'
SHOW KEYS FROM bigdata;
Display information on the indexes on table 'bigdata'
in the database 'mydata'
SHOW INDEX FROM bigdata FROM mydata;
Show the tables available from the database 'mydata'
that begin with the letter 'z'
SHOW TABLES FROM mydata LIKE 'z%';
Display information about the columns on the table
'skates'
SHOW COLUMNS FROM stakes;
Display information about the columns on the table
'people' that end with '_name'
SHOW FIELDS FROM people LIKE '%_name';
Show the threads
SHOW PROCESSLIST;

SQL | 85

Show server status information.
SHOW STATUS;
Display server variables
SHOW VARIABLES;

TRUNCATE
TRUNCATE TABLE table

Drops and recreates the specified table.

Example
Truncate the emp_data table
TRUNCATE TABLE emp_data;

UNLOCK
UNLOCK TABLES

Unlocks all tables that were locked using the LOCK statement
during the current connection.

Example
Unlock all tables
UNLOCK TABLES

UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table

 SET column=value, ...

 [WHERE clause]

 [LIMIT n]

Alters data within a table. You may use the name of a column as a
value when setting a new value. For example, UPDATE health SET
miles_ran=miles_ran+5 would add five to the current value of the
miles_ran column.

The WHERE clause limits updates to matching rows. The LIMIT
clause ensures that only n rows change. The statement returns the
number of rows changed.

You must have UPDATE privileges to use this statement.

86 | MySQL Pocket Reference

Example
Change the name 'John Deo' to 'John Doe' everywhere in
the people table.
UPDATE people SET name='John Doe' WHERE name='John Deo'

USE
USE database

Selects the default database. The database given in this statement
is used as the default database for subsequent queries. Other data-
bases may still be explicitly specified using the database.table.
column notation.

Example
Make db1 the default database.
USE db1

Transaction Rules
In general, your transactions are defined by the current auto-
commit statement. The default autocommit state for MySQL
is 1—meaning all statements are committed as they are exe-
cuted. You can change this state by issuing the following
command:

SET AUTOCOMMIT=0

Transactions take place when auto-commit is off or when a
series of statements is prefixed with a START TRANSACTION
command. When a transaction is in operation, statements
are queued with no impact to the database until one of three
things happens:

• A COMMIT command is executed, causing all changes from
the statements to take force in the database.

• A ROLLBACK command is executed, discarding the effects
of any commands prior to the last commit/rollback.

• A statement with an implicit commit is executed.

Operators | 87

In addition, you can commit or rollback and simultaneously
begin a new transaction when the AND CHAIN modifier is
added to the COMMIT or ROLLBACK.

Statements that force an implicit commit (i.e., they act as if
you executed a COMMIT just before you execute them) include:
ALTER EVENT, ALTER FUNCTION, ALTER PROCEDURE, ALTER TABLE,
BEGIN, CREATE DATABASE, CREATE EVENT, CREATE FUNCTION, CREATE
INDEX, CREATE PROCEDURE, CREATE TABLE, DROP DATABASE, DROP
EVENT, DROP FUNCTION, DROP INDEX, DROP PROCEDURE, DROP TABLE,
LOAD DATA INFILE LOCK TABLES, RENAME TABLE, SET AUTOCOMMIT=1,
START TRANSACTION, TRUNCATE TABLE, UNLOCK TABLES.

You can also set up save points via the SAVEPOINT command
that enable you to rollback to a specific point in an other-
wise long transaction.

Transaction isolation levels define the impact of your trans-
action (and any locks created by the transaction). You define
a transaction isolation level prior to starting any transaction
through the following command:

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
 {READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ|
SERIALIZABLE }

The default transaction isolation with InnoDB is repeatable
read.

Operators
MySQL offers three kinds of operators: arithmetic, compari-
son, and logical.

Rules of Precedence
When your SQL contains complex expressions, the sub-
expressions are evaluated based on MySQL’s rules of prece-
dence. Of course, you may always override MySQL’s rules of
precedence by enclosing an expression in parentheses.

88 | MySQL Pocket Reference

1. BINARY, COLLATE

2. !

3. - (unary minus) ~ (unary bit inversion)

4. ^

5. * / % DIV MOD

6. + -

7. << >>

8. &

9. |

10. < <= > >= = <=> <> IN IS LIKE REGEXP

11. BETWEEN CASE WHEN THEN ELSE

12. NOT

13. && AND

14. || OR XOR

15. :=

Arithmetic Operators
Arithmetic operators perform basic arithmetic on two values.

+
Adds two numerical values.

-
Subtracts two numerical values.

*
Multiplies two numerical values.

/
Divides two numerical values.

DIV
Integer division.

%
Gives the modulo of two numerical values.

Operators | 89

|
Performs a bitwise OR on two integer values.

^
Performs a bitwise exclusive OR on two integer values.

&
Performs a bitwise AND on two integer values.

<<
Performs a bitwise left shift on an integer value.

>>
Performs a bitwise right shift on an integer value.

Comparison Operators
Comparison operators compare values and return 1 if the
comparison is true and 0 otherwise. Except for the <=> opera-
tor, NULL values cause a comparison operator to evaluate to
NULL.

<> or !=
Match rows if the two values are not equal.

<=
Match rows if the left value is less than or equal to the
right value.

<
Match rows if the left value is less than the right value.

>=
Match rows if the left value is greater than or equal to the
right value.

>
Match rows if the left value is greater than the right
value.

90 | MySQL Pocket Reference

value BETWEEN value1 AND value2
Match rows if value is between value1 and value2, or
equal to one of them.

value NOT BETWEEN value1 AND value2
Match rows if value is not between value1 and value2.

value IN (value1,value2,...)
Match rows if value is among the values listed.

value NOT IN (value1, value2,...)
Match rows if value is not among the values listed.

value1 LIKE value2
Compares value1 to value2 and matches the rows if they
match. The righthand value can contain the wildcard '%',
which matches any number of characters (including 0),
and '_', which matches exactly one character. Its most
common use is comparing a field value with a literal con-
taining a wildcard (e.g., SELECT name FROM people WHERE
name LIKE 'B%').

value1 NOT LIKE value2
Compares value1 to value2 and matches the rows if they
differ. This is identical to NOT (value1 LIKE value2).

value1 REGEXP/RLIKE value2
Compares value1 to value2 using the extended regular
expression syntax and matches the rows if the two val-
ues match. The righthand value can contain full Unix
regular expression wildcards and constructs (e.g., SELECT
name FROM people WHERE name RLIKE '^B.*').

value1 NOT REGEXP value2
Compares value1 to value2 using the extended regular
expression syntax and matches the rows if they differ.
This is identical to NOT (value1 REXEXP value2).

Functions | 91

Logical Operators
Logical operators check the truth value of one or more
expressions. In SQL terms, a logical operator checks whether
its operands are 0, nonzero, or NULL. A 0 value means false,
nonzero means true, and NULL means no value.

NOT or !
Performs a logical not (returns true if the argument is
false, NULL if it is NULL, and otherwise false). Note that !
has a higher precedence than NOT.

OR or ||
Performs a logical or (returns true if any of the argu-
ments are nonzero and non-NULL, NULL if any are NULL;
otherwise, returns false).

XOR
Performs a logical exclusive or. If either operand is NULL,
this operator evaluates to NULL. Otherwise, it evaluates to
true if one operand is true, otherwise false. a XOR b is log-
ically equivalent to (a AND (NOT b) OR ((NOT a) AND b).

AND or &&
Performs a logical and (returns false if any of the argu-
ments are false, NULL if any are NULL; otherwise, returns
true).

Functions
MySQL provides built-in functions that perform special
operations.

Aggregate Functions
Aggregate functions operate on a set of data. These are usu-
ally used to perform some action on a complete set of
returned rows. For example, SELECT AVG(height) FROM kids

92 | MySQL Pocket Reference

would return the average of all the values of the height field
in the kids table. AVG(), COUNT(), and SUM() allow DISTINCT.

AVG(expression)
Returns the average value of the values in expression (e.g.,
SELECT AVG(score) FROM tests).

BIT_AND(expression)
Returns the bitwise AND aggregate of all the values in
expression (e.g., SELECT BIT_AND(flags) FROM options). A
bit will be set in the result if and only if the bit is set in
every input field.

BIT_OR(expression)
Returns the bitwise OR aggregate of all the values in
expression (e.g., SELECT BIT_OR(flags) FROM options). A
bit is set in the result if it is set in at least one of the input
fields.

BIT_XOR(expression)
Returns the bitwise XOR aggregate of all the values in
expression with 64-bit precision.

COUNT(expression)
Returns the number of times expression was not null.
COUNT(*) will return the number of rows with some data
in the entire table (e.g., SELECT COUNT(*) FROM folders).

GROUP_CONCAT([DISTNCT] expression [ORDER BY {column |
expression}] [SEPARATOR sep])

Provides a string that combines in order all the results
marked by expression.

MAX(expression)
Returns the largest value in expression (e.g., SELECT MAX
(elevation) FROM mountains).

MIN(expression)
Returns the smallest value in expression (e.g., SELECT
MIN(level) FROM toxic_waste).

Functions | 93

STDDEV_POP(expression)
Returns the standard deviation of the values in
expression (e.g., SELECT STDDEV_POP(points) FROM data).
Also supported are the old MySQL STD() and the Oracle
STDDEV() function, which both use the same syntax but
are not portable. STDDEV_POP() is new standard SQL, pro-
vided as of MySQL 5.0.3.

STDDEV_SAMP([expression])
Returns the sample standard deviation of expression.

SUM(expression)
Returns the sum of the values in expression (e.g., SELECT
SUM(calories) FROM daily_diet).

VAR_POP(expression)
Returns the population standard variance of expression.
This function considers the entire data set and not a sam-
ple. This function is new as of MySQL 5.0.3 and replaces
the older, nonstandard VARIANCE().

VAR_SAMP(expression)
Returns the sample variance of expression.

General Functions
General functions operate on one or more discrete values.
We have omitted a few rarely used functions with very spe-
cialized applications.

ABS(number)
Returns the absolute value of number (e.g., ABS(-10)
returns “10”).

ACOS(number)
Returns the inverse cosine of number in radians (e.g.,
ACOS(0) returns “1.570796”).

ADDDATE(date, INTERVAL, amount, type)
Synonym for DATE_ADD.

94 | MySQL Pocket Reference

ADDTIME(when,amount)
Adds the specified amount as a TIME expression to the TIME
or DATETIME of when.

AES_DECRYPT(encrypted, key)
Decrypts the AES-encoded string encrypted using the
specified key.

AES_ENCRYPT(plain, key)
Encrypts the plain string based on the specified encryp-
tion key using AES encryption. The default is 128-bit
encryption. As of MySQL 5.0, MySQL’s AES encryption
is the most cryptographically strong encryption method
in MySQL.

ASCII(char)
Returns the ASCII value of the given character (e.g.,
ASCII(h) returns 104).

ASIN(number)
Returns the inverse sine of number in radians (e.g.,
ASIN(0) returns 0.000000).

ATAN(number)
Returns the inverse tangent of number in radians (e.g.,
ATAN(1) returns 0.785398).

ATAN2(X, Y)
Returns the inverse tangent of the point (X,Y) (for exam-
ple, ATAN2(-3,3) returns -0.785398).

BENCHMARK(num, function)
Runs function over and over num times and returns 0.

BIN(decimal)
Returns the binary value of the given decimal number
(e.g., BIN(8) returns 1000). This is equivalent to the
function CONV(decimal,10,2).

Functions | 95

BIT_COUNT(number)
Returns the number of bits that are set to 1 in the
binary representation of the number (e.g., BIT_
COUNT(17) returns 2).

BIT_LENGTH(string)
Returns the number of bits in string (the number of
characters times 8, for single-byte characters).

CASE value WHEN choice THEN returnvalue ... ELSE
returnvalue END

Compares value to a series of choice values or expres-
sions. The first choice to match the value ends the func-
tion and returns the corresponding returnvalue. The
ELSE returnvalue is returned if no choice matches.

CAST(expression AS type)
Casts the expression into the SQL type noted by type.

CEILING(number)
Returns the smallest integer greater than or equal to
number (e.g., CEILING (5.67) returns 6).

CHAR(num1[,num2,. . .])
Returns a string made from converting each number to
the character corresponding to that ASCII value (e.g.,
CHAR(122) returns Z).

CHAR_LENGTH(string)
Provides the length of a string in characters.

CHARACTER_LENGTH(string)
Provides the length of a string in characters.

CHARSET(expression)
Provides the character set of the string expression.

COALESCE(expr1, expr2, ...)
Returns the first non-NULL expression in the list (e.g.,
COALESCE(NULL, NULL, 'cheese', 2) returns cheese).

96 | MySQL Pocket Reference

COERCIBILITY(expression)
Provides a code that represents the collation coercibility
of the string expression. Values are:

0
Explicit collation

1
No collation

2
Implicit collation

3
System constant

4
Coercible

5
Ignorable

COLLATION(expression)
Provides the collation associated with the string
expression.

COMPRESS(expression)
Compresses the string expression into binary data using
the compression library (such as zlib) compiled into
MySQL. If no compression library was compiled into the
system, this function will return NULL.

CONCAT(string1[,string2,string3,. . .])
Returns the string formed by joining together all of the
arguments (e.g., CONCAT('Hi',' ','Mom','!') returns Hi
Mom!).

CONCAT_WS(sep, string1, [string2, ...])
Returns all strings as a single string, separated by sep.

CONNECTION_ID()
Returns the ID of the current connection.

Functions | 97

CONV(number, base1, base2)
Returns the value of number converted from base1 to
base2. number must be an integer value (either as a bare
number or as a string). The bases can be any integer from
2 to 36. Thus, CONV(8,10,2) returns 1000, which is the
number 8 in decimal converted to binary.

CONVERT(expression,type)
Synonym for CAST().

CONVERT(expression USING charset)
Converts the specified expression string in one character
set to the character set specified by charset. For exam-
ple, CONVERT('Some latin-1 string.' USING utf8).

CONVERT_TZ(expression,from,to)
Converts the DATETIME expression from the specified from
time zone to the specified to time zone.

COS(radians)
Returns the cosine of the given number, which is in radi-
ans (e.g., COS(0) returns 1.000000).

COT(radians)
Returns the cotangent of the given number, which must
be in radians (e.g., COT(1) returns 0.642093).

CRC32(expression)
Computes a cyclic redundancy check on expression and
returns a 32-bit unsigned value, or NULL if the argument is
NULL.

CURDATE()
Returns the current date. A number of the form YYYYMMDD
is returned if this is used in a numerical context; other-
wise, a string of the form 'YYYY-MM-DD' is returned (e.g.,
CURDATE() could return 2007-08-24).

CURRENT_DATE()
Synonym for CURDATE().

98 | MySQL Pocket Reference

CURRENT_TIME()
Synonym for CURTIME().

CURRENT_TIMESTAMP()
Synonym for NOW().

CURTIME()
Returns the current time. A number of the form HHMMSS is
returned if this is used in a numerical context; otherwise,
a string of the form HH:MM:SS is returned (e.g., CURTIME()
could return 13:02:43).

DATABASE()
Returns the name of the current database (e.g., DATABASE()
could return mydata).

DATE_ADD(date,INTERVAL amount type)
Returns a date formed by adding the given amount of
time to the given date. The type element to add can be
one of the following: SECOND, MINUTE, HOUR, DAY, MONTH,
YEAR, MINUTE_SECOND (as “minutes:seconds”), HOUR_MINUTE
(as “hours:minutes”), DAY_HOUR (as “days hours”), YEAR_
MONTH (as “years-months”), HOUR_SECOND (as “hours:min-
utes:seconds”), DAY_MINUTE (as “days hours:minutes”)
and DAY_SECOND (as “days hours:minutes:seconds”).
Except for those time elements with specified forms, the
amount must be an integer value (e.g., DATE_ADD("1998-
08-24 13:00:00", INTERVAL 2 MONTH) returns 1998-10-24
13:00:00).

DATE_FORMAT(date, format)
Returns the date formatted as specified. The format string
prints as given with the following values substituted:

%a
Short weekday name (Sun, Mon, etc.)

%b
Short month name (Jan, Feb, etc.)

Functions | 99

%D
Day of the month with ordinal suffix (1st, 2nd, 3rd,
etc.)

%d
Day of the month

%H
24-hour hour (always two digits, e.g., 01)

%h/%I
12-hour hour (always two digits, e.g., 09)

%i
Minutes

%j
Day of the year

%k
24-hour hour (one or two digits, e.g., 1)

%l
12-hour hour (one or two digits, e.g., 9)

%M
Name of the month

%m
Number of the month (January is 1)

%p
A.M. or P.M.

%r
12-hour total time (including A.M./P.M.)

%S
Seconds (always two digits, e.g., 04)

%s
Seconds (one or two digits, e.g., 4)

100 | MySQL Pocket Reference

%T
24-hour total time

%U
Week of the year (new weeks begin on Sunday)

%W
Name of the weekday

%w
Number of weekday (0 is Sunday)

%Y
Four-digit year

%y
Two-digit year

%%
A literal % character

DATE_SUB(date, INTERVAL amount type)
Returns a date formed by subtracting the given amount
of time from the given date. The same interval types are
used as with DATE_ADD (e.g., SUBDATE("1999-05-20 11:04:
23", INTERVAL 2 DAY) returns 1999-05-18 11:04:23).

DAYNAME(date)
Returns the name of the day of the week for the given
date (e.g., DAYNAME('1998-08-22') returns Saturday).

DAYOFMONTH(date)
Returns the day of the month for the given date (e.g.,
DAYOFMONTH('1998-08-22') returns 22).

DAYOFWEEK(date)
Returns the number of the day of the week (1 is Sunday)
for the given date (e.g., DAY_OF_WEEK('1998-08-22')
returns 7).

DAYOFYEAR(date)
Returns the day of the year for the given date (e.g.,
DAYOFYEAR('1983-02-15') returns 46).

Functions | 101

DECODE(blob, passphrase)
Decodes encrypted binary data using the specified pass-
phrase. The encrypted binary is expected to be encrypted
with the ENCODE() function:

mysql> SELECT DECODE(ENCODE('open sesame', 'please'),
'please');

+---+
| DECODE(ENCODE('open sesame', 'please'), 'please') |
+---+
| open sesame |
+---+
1 row in set (0.01 sec)

DEGREES(radians)
Returns the given argument converted from radians to
degrees (e.g., DEGREES(2*PI()) returns 360.000000).

DES_DECRYPT(encrypted, [key])
Decrypts the DES-encrypted string encrypted using the
optional key string.

DES_ENCRYPT(plain,[key])
Encrypts the specified plain string using the option key
string or number using DES encryption.

ELT(number,string1,string2, . . .)
Returns string1 if number is 1, string2 if number is 2, etc. A
null value is returned if number does not correspond with a
string (e.g., ELT(3, “once","twice","thrice","fourth")
returns thrice).

ENCODE(secret, passphrase)
Creates a binary encoding of the secret using the
passphrase. You may later decode the secret using
DECODE() and the passphrase.

ENCRYPT(string[,salt])
Password-encrypts the given string. If a salt is provided,
it is used to add extra obfuscating characters to the
encrypted string (e.g., ENCRYPT('mypass','3a') could
return 3afi4004idgv).

102 | MySQL Pocket Reference

EXP(power)
Returns the number e raised to the given power (e.g.,
EXP(1) returns 2.718282).

EXPORT_SET(num, on, off, [separator, [num_bits]])
Examines a number and maps the on and off bits in that
number to the strings specified by the on and off argu-
ments. In other words, the first string in the output indi-
cates the on/off value of the first (low-order) bit of num,
the second string reflects the second bit, and so on.
Examples:
mysql> SELECT EXPORT_SET(5, "y", "n", "", 8);

+--------------------------------+
| EXPORT_SET(5, "y", "n", "", 8) |
+--------------------------------+
| ynynnnnn |
+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT EXPORT_SET(5, "y", "n", ",", 8);

+---------------------------------+
| EXPORT_SET(5, "y", "n", ",", 8) |
+---------------------------------+
| y,n,y,n,n,n,n,n |
+---------------------------------+
1 row in set (0.00 sec)

EXTRACT(interval FROM datetime)
Returns the specified part of a DATETIME (e.g.,
EXTRACT(YEAR FROM '2001-08-10 19:45:32') returns 2001).

FIELD(string,string1,string2, . . .)
Returns the position in the argument list (starting with
string1) of the first string that is identical to string.
Returns 0 if no other string matches string (e.g.,
FIELD('abe','george','john','abe','bill') returns 3).

Functions | 103

FIND_IN_SET(string,set)
Returns the position of string within set. The set argu-
ment is a series of strings separated by commas (e.g., FIND_
IN_SET ('abe', 'george, john, abe, bill') returns 3).

FLOOR(number)
Returns the largest integer less than or equal to number
(e.g., FLOOR(5.67) returns 5).

FORMAT(number,decimals)
Neatly formats the given number, using the given num-
ber of decimals (e.g., FORMAT(4432.99134,2) returns
4,432.99).

FOUND_ROWS()
When executing a SELECT with a LIMIT clause, this func-
tion returns the number of rows the SELECT would have
returned absent the LIMIT clause.

FROM_DAYS(days)
Returns the date that is the given number of days (in
which day 1 is Jan 1 of year 1) (e.g., FROM_DAYS(728749)
returns 1995-04-02).

FROM_UNIXTIME(seconds[, format])
Returns the date (in GMT) corresponding to the given
number of seconds since the epoch (January 1, 1970
GMT). For example, FROM_UNIXTIME(903981584) returns
1998-08-24 18:00:02. If a format string (using the same
format as DATE_FORMAT) is given, the returned time is for-
matted accordingly.

GET_LOCK(name,seconds)
Creates a named user-defined lock that waits for the
given number of seconds until timeout. This lock can be
used for client-side application locking between pro-
grams that cooperatively use the same lock names. If the
lock is successful, 1 is returned. If the lock times out

104 | MySQL Pocket Reference

while waiting, 0 is returned. All others errors return
NULL values. Only one named lock may be active at a
time during a single session. Running GET_LOCK() more
than once will silently remove any previous locks. For
example: GET_LOCK("mylock",10) could return 1 within
the following 10 seconds.

GREATEST(arg1, arg2[, arg3, . . .])
Returns the numerically highest of all the arguments (for
example, GREATEST(5,6,68,1,-300) returns 68).

HEX(decimal)
Returns the hexadecimal value of the given decimal num-
ber (e.g., HEX(90) returns 3a). This is equivalent to the
function CONV(decimal,10,16).

HOUR(time)
Returns the hour of the given time (e.g., HOUR('15:33:30')
returns 15).

IF(test, value1, value2)
If test is true, returns value1, otherwise returns value2
(e.g., IF(1>0,"true","false") returns true).

IFNULL(value, value2)
Returns value if it is not null; otherwise, returns value2
(e.g., IFNULL(NULL, "bar") returns bar).

INET_ATON(ip)
Provides the number representation of a numeric IP
address (i.e., 192.168.1.1) in string form.

INET_NTOA(num)
Provides the numeric address in string form associated
with the specified network num.

INSERT(string,position,length,new)
Returns the string created by replacing the substring of
string starting at position and going length characters
with the string new (e.g., INSERT('help',3,1,' can jump')
returns he can jump).

Functions | 105

INSTR(string,substring)
Identical to LOCATE except that the arguments are
reversed (e.g., INSTR('makebelieve','lie') returns 7).

INTERVAL(A,B,C,D, . . .)
Returns 0 if A is the smallest value, 1 if A is between B and
C, 2 if A is between C and D, etc. All values except for A
must be in order (e.g., INTERVAL(5,2,4,6,8) returns 2,
because 5 is in the second interval, between 4 and 6).

ISNULL(expression)
Returns 1 if the expression evaluates to NULL; otherwise,
returns 0 (e.g., ISNULL(3) returns 0).

LAST_INSERT_ID()
Returns the last value that was automatically generated
for an AUTO_INCREMENT field (e.g., LAST_INSERT_ID() could
return 4).

LCASE(string)
Synonym for LOWER().

LEAST(arg1, arg2[, arg3,. . .])
Returns the numerically smallest of all the arguments (for
example, LEAST(5,6,68,1,-20) returns -20).

LEFT(string,length)
Returns length characters from the left end of string (e.g.,
LEFT("12345",3) returns 123).

LENGTH(string)
Returns the number of bytes in string (e.g., LENGTH('Hi
Mom!') returns 7).

LOAD_FILE(filename)
Reads the contents of the specified file as a string. This
file must exist on the server and be world readable. Natu-
rally, you must also have FILE privileges.

LOCATE(substring,string[,number])
Returns the character position of the first occurrence of
substring within string (e.g., LOCATE('SQL','MySQL')

106 | MySQL Pocket Reference

returns 3). If substring does not exist in string, 0 is
returned. If a numerical third argument is supplied to
LOCATE, the search for substring within string does not
start until the given position within string.

LOG(number)
Returns the natural logarithm of number (e.g., LOG(2)
returns 0.693147).

LOG10(number)
Returns the common logarithm of number (e.g.,
LOG10(1000) returns 3.000000).

LOWER(string)
Returns string with all characters turned into lowercase
(e.g., LOWER('BoB') returns bob).

LPAD(string,length,padding)
Returns string with padding added to the left end until
the new string is length characters long (e.g., LPAD(' Merry
X-Mas',18,'Ho') returns HoHoHo Merry X-Mas).

LTRIM(string)
Returns string with all leading whitespace removed (e.g.,
LTRIM(' Oops') returns Oops).

MAKE_SET(bits, string1, string2, ...)
Creates a MySQL SET based on the binary representation
of a number by mapping the on bits in the number to
string values. The first string will appear in the output if
the first (low-order) bit of bits is set, the second string
will appear if the second bit is set, and so on. Example:

mysql> SELECT MAKE_SET(5, "a", "b", "c", "d", "e",
"f");

+---+
| MAKE_SET(5, "a", "b", "c", "d", "e", "f") |
+---+
| a,c |
+---+
1 row in set (0.01 sec)

Functions | 107

MASTER_POS_WAIT(log, position, [timeout])
Blocks operations until a slave has completed its
updates against the log file up to the specified position.
You can provide an optional timeout value to time out
the blocking.

MD5(string)
Creates an MD5 checksum for the specified string. The
MD5 checksum is always a string of 32 hexadecimal
numbers.

MICROSECOND(expression)
Provides the number of microseconds represented in the
specified expression.

MID(string,position,length)
Synonym for SUBSTRING() with three arguments.

MINUTE(time)
Returns the minute of the given time (e.g., MINUTE('15:
33:30') returns 33).

MOD(num1, num2)
Returns the modulo of num1 divided by num2. This is the
same as the % operator (e.g., MOD(11,3) returns 2).

MONTH(date)
Returns the number of the month (1 is January) for the
given date (e.g., MONTH('1998-08-22') returns 8).

MONTHNAME(date)
Returns the name of the month for the given date (e.g.,
MONTHNAME('1998-08-22') returns August).

NOW()
Returns the current date and time. A number of the form
YYYYMMDDHHMMSS is returned if this is used in a numerical
context; otherwise, a string of the form 'YYYY-MM-DD HH:
MM:SS' is returned (e.g., NOW() could return 1998-08-24
12:55:32).

108 | MySQL Pocket Reference

NULLIF(value, value2)
Return NULL if value and value2 are equal, or else returns
value (e.g., NULLIF((5+3)18,1) returns NULL).

OCT(decimal)
Returns the octal value of the given decimal number (e.g.,
OCT(8) returns 10). This is equivalent to the function
CONV(decimal,10,8).

OCTET_LENGTH(string)
Synonym for LENGTH().

ORD(string)
Returns a numeric value corresponding to the first char-
acter in string. Treats a multibyte string as a number in
base 256. Thus, an 'x' in the first byte is worth 256 times
as much as an 'x' in the second byte.

PASSWORD(string)
Returns a password-encrypted version of the given string
(e.g., PASSWORD('mypass') could return 3afi4004idgv).

PERIOD_ADD(date,months)
Returns the date formed by adding the given number of
months to date (which must be of the form YYMM or
YYYYMM) (e.g., PERIOD_ADD(9808,14) returns 199910).

PERIOD_DIFF(date1, date2)
Returns the number of months between the two dates
(which must be of the form YYMM or YYYYMM) (e.g., PERIOD_
DIFF(199901,8901) returns 120).

PI()
Returns the value of pi: 3.141593.

POSITION(substring,string)
Synonym for LOCATE() with two arguments.

POW(num1, num2)
Returns the value of num1 raised to the num2 power (e.g.,
POWER(3,2) returns 9.000000).

Functions | 109

POWER(num1, num2)
Synonym for POW().

QUARTER(date)
Returns the number of the quarter of the given date (1 is
January–March) (e.g., QUARTER('1998-08-22') returns 3).

RADIANS(degrees)
Returns the given argument converted from degrees to
radians (e.g., RADIANS(-90) returns -1.570796).

RAND([seed])
Returns a random decimal value between 0 and 1. If an
argument is specified, it is used as the seed of the random
number generator (e.g., RAND(3) could return 0.435434).

RELEASE_LOCK(name)
Removes the named lock created with the GET_LOCK func-
tion. Returns 1 if the release is successful, 0 if it failed
because the current thread did not own the lock, and a
null value if the lock did not exist. For example,
RELEASE_LOCK("mylock").

REPEAT(string,number)
Returns a string consisting of the original string repeated
number times. Returns an empty string if number is less
than or equal to zero (e.g., REPEAT('ma',4) returns
mamamama).

REPLACE(string,old,new)
Returns a string that has all occurrences of the substring
old replaced with new (e.g., REPLACE('black
jack','ack','oke') returns bloke joke).

REVERSE(string)
Returns the character reverse of string (e.g., REVERSE('my
bologna') returns angolob ym).

RIGHT(string,length)
Synonym for SUBSTRING() with FROM argument (e.g.,
RIGHT("string",1) returns g).

110 | MySQL Pocket Reference

ROUND(number[,decimal])
Returns number rounded to the given number of deci-
mals. If no decimal argument is supplied, number is
rounded to an integer (e.g., ROUND(5.67,1) returns 5.7).

RPAD(string,length,padding)
Returns string with padding added to the right end until
the new string is length characters long (e.g.,
RPAD('Yo',5,'!') returns Yo!!!).

RTRIM(string)
Returns string with all trailing whitespace removed (e.g.,
RTRIM('Oops ') returns Oops).

SECOND(time)
Returns the seconds of the given time (e.g., SECOND('15:
33:30') returns 30).

SEC_TO_TIME(seconds)
Returns the number of hours, minutes, and seconds in
the given number of seconds. A number of the form
HHMMSS is returned if this is used in a numerical context;
otherwise, a string of the form HH:MM:SS is returned (e.g.,
SEC_TO_TIME(3666) returns 01:01:06)

SESSION_USER()
Synonym for USER().

SHA(expression)
Returns an SHA-1 checksum string for the specified
expression.

SIGN(number)
Returns -1 if number is negative, 0 if it’s zero, or 1 if it’s
positive (e.g., SIGN(4) returns 1).

SIN(radians)
Returns the sine of the given number, which is in radians
(e.g., SIN(2*PI()) returns 0.000000).

Functions | 111

SLEEP(seconds)
Pauses the operation of the current SQL for the specified
number of seconds.

SOUNDEX(string)
Returns the Soundex code associated with string (e.g.,
SOUNDEX('Jello') returns J400).

SPACE(number)
Returns a string that contains number spaces (e.g.,
SPACE(5) returns “ ”).

SQRT(number)
Returns the square root of number (e.g., SQRT(16) returns
4.000000).

STRCMP(string1, string2)
Returns 0 if the strings are the same, -1 if string1 would
sort before string2, or 1 if string1 would sort after
string2 (e.g., STRCMP('bob','bobbie') returns -1).

SUBDATE(date,INTERVALamounttype)
Synonym for DATE_SUB().

SUBSTRING(string,position)

SUBSTRING(string FROM position)
Returns the remaining substring from string starting at
position.

SUBSTRING(string,position,length)

SUBSTRING(string FROM position FOR length)
Returns a substring of string starting at position for
length characters (e.g., SUBSTRING("123456",3) returns
3456).

SUBSTRING_INDEX(string,char,number)
Returns the substring formed by counting number of char
within string and then returns everything to the left if the
count is positive, or everything to the right if the count is
negative (e.g., SUBSTRING_INDEX('1,2,3,4,5',',',3) returns
"1,2,3").

112 | MySQL Pocket Reference

SYSDATE()
Similar to NOW(), except it provides the time at which the
function executes (whereas NOW() returns the time at
which the query began).

SYSTEM_USER()
Synonym for USER().

TAN(radians)
Returns the tangent of the given number, which must be
in radians (e.g., TAN(0) returns 0.000000).

TIME_FORMAT(time, format)
Returns the given time using a format string. The format
string is of the same type as DATE_FORMAT, as shown earlier.

TIME_TO_SEC(time)
Returns the number of seconds in the time argument (e.g.,
TIME_TO_SEC('01:01:06') returns 3666).

TO_DAYS(date)
Returns the number of days (in which day 1 is Jan 1 of
year 1) to the given date. The date may be a value of type
DATE, DATETIME, or TIMESTAMP, or a number of the form
YYMMDD or YYYYMMDD (e.g., TO_DAYS(19950402) returns
728749).

TRIM([BOTH|LEADING|TRAILING] [remove] [FROM] string)
With no modifiers, returns string with all trailing and
leading whitespace removed. You can specify to remove
the leading or trailing whitespace, or both. You can also
specify a character other than space to be removed (e.g.,
TRIM(both '-' from '---look here---') returns look
here).

TRUNCATE(number, decimals)
Returns number truncated to the given number of deci-
mals (for example, TRUNCATE(3.33333333,2) returns 3.33).

UCASE(string)
Synonym for UPPER().

Functions | 113

UNCOMPRESS(compressed)
Uncompresses the binary value compressed.

UNCOMPRESS_LENGTH(compressed)
Returns the uncompressed length of the specified
compressed binary data.

UNHEX(string)
Performs the reverse operation of HEX().

UNIX_TIMESTAMP([date])
Returns the number of seconds from the epoch (January 1,
1970 GMT) to the given date (in GMT). If no date is given, the
number of seconds to the current date is used (e.g., UNIX_
TIMESTAMP('1998-08-24 18:00:02') returns 903981584).

UPPER(string)
Returns string with all characters turned into uppercase
(e.g., UPPER ('Scooby') returns SCOOBY).

USER()
Returns the name of the current user.

UTC_DATE()
Returns the current UTC date as either a string or num-
ber ('2007-04-05' or 20070405) depending on whether the
function is executed in a string or numeric context.

UTC_TIME()
Returns the current UTC time as either a string or num-
ber ('11:04:03' or 110403) depending on whether the
function is executed in a string or numeric context.

UTC_TIMESTAMP()
Returns the current UTC timestamp as either a string or
number ('2007-04-05 11:04:03' or 20070405110403)
depending on whether the function is executed in a
string or numeric context.

114 | MySQL Pocket Reference

UUID()
Returns a universally unique identifier that is guaranteed
to be unique across any two calls, even if the calls are
done on different machines using different versions of
MySQL using different operating systems.

VERSION()
Provides the installed MySQL version.

WEEK(date)
Returns the week of the year for the given date (e.g.,
WEEK('1998-12-29') returns 52).

WEEKDAY(date)
Returns the numeric value of the day of the week for the
specified date. Day numbers start with Monday as 0 and
end with Sunday as 6.

WEEKOFYEAR(date)
Returns the week of the year (1–53) in which the date
represented by date takes place.

YEAR(date)
Returns the year of the given date (e.g., YEAR('1998-12-
29') returns 1998).

YEARWEEK(date)
Returns the year and week for the specified date value:
for instance, 200716.

Storage Engines
Table 5 lists some of the table types supported in most
MySQL installations. For truly atomic database transac-
tions, you should use InnoDB tables. New transactional stor-
age engines are being introduced at the time of this writing,
however.

Stored Procedures and Functions | 115

Stored Procedures and Functions
Stored routines are encapsulated SQL components that are
stored in the database for reuse in your database applica-
tions. MySQL supports two kinds of stored routines: proce-
dures and functions. They behave very similarly except for
three key differences:

1. Functions accept only IN parameters; procedures can
accept IN, OUT, and INOUT parameters.

2. Functions return a value; procedures return values via
OUT or INOUT parameters.

Table 5. MySQL table types

Type Transactional Description

ARCHIVE No Used for archiving databases
without indexes in a very small
footprint.

BLACKHOLE No Stores no data at all. All queries
return no rows.

CSV No Stores data in comma-separated
files.

FALCON Yes New experimental, transactional
storage engine to potentially
replace InnoDB in a future
release.

INNODB Yes Transaction-safe tables with row
locking.

MEMORY (formerly HEAP) No Memory-based table; not
persistent.

MERGE No A collection of MyISAM tables
merged as a single table.

MYISAM No A newer, portable table type to
replace ISAM.

NDB Yes Clustered storage engine for
MySQL Cluster.

116 | MySQL Pocket Reference

3. Functions may be called in a query just like MySQL func-
tions or user-defined functions; procedures are called
independently via the CALL command.

The CREATE PROCEDURE/CREATE FUNCTION command creates a
stored procedure. You must have CREATE ROUTINE privileges
in order to create any stored procedure in MySQL. You must
define a name and a body for the procedure:

CREATE PROCEDURE sitecount() SELECT COUNT(*) FROM web_
site;

You may subsequently call the procedure using the CALL
command:

CALL sitecount();

Parameters
MySQL supports three kinds of stored procedure parameters:

IN
The parameter is passed into the procedure as input. The
procedure can then operate on the parameter values. By
default, a parameter is an IN parameter. Stored functions
can accept only IN parameters.

OUT
An output value is stored in the parameter for use by the
caller of the stored procedure.

INOUT
The caller passes into the procedure a value for the
INOUT parameter and any changes made by the proce-
dure then become available to the caller after the proce-
dure is executed.

Parameters are specified in the procedure definition as a
comma-separated list of parameters:

CREATE PROCEDURE sitecount(OUT total INT) SELECT COUNT(*)
INTO total FROM web_site;

Stored Procedures and Functions | 117

CREATE PROCEDURE ssl_port(IN addr VARCHAR(255), OUT total
INT)
SELECT ssl_port INTO total FROM web_site WHERE address =
addr;

For each parameter, you may specify what kind of parameter
it is, the name of the parameter, and the SQL type that it
should store.

Pass parameters as a comma-separated list of values in the
call:

CALL sitecount(@total);
SELECT @total;

CALL ssl_port('www.valtira.com', @port);
SELECT @port;

Logic
In additional to the simple logic described in the previous
section, MySQL stored procedures allow complex applica-
tion logic to be stored in the database. To perform complex
logic, wrap the SQL in a BEGIN/END block:

DELIMITER //
CREATE PROCEDURE deactivate(IN pageId BIGINT)
BEGIN
UPDATE page SET active = 'N' WHERE page_id = pageId;
UPDATE content SET active = 'N' WHERE page = pageId;
END
//

Because the body can contain multiple statements that
should end in the standard MySQL delimiter, you should
define a temporary custom delimiter prior to creating the
stored procedure.

Within a block, you can declare local variables using the
DECLARE command:

DELIMITER //
CREATE PROCEDURE ssl_count(IN siteId BIGINT)
BEGIN
DECLARE total INT DEFAULT 0;

118 | MySQL Pocket Reference

SELECT COUNT(*) INTO total FROM web_address
WHERE using_ssl = 'Y' AND web_site_id = siteId;
UPDATE web_site SET ssl_count = @total WHERE web_site_id =
siteId;
END
//

Finally, you can control the flow of procedure logic using
the flow control commands common to most program-
ming languages:

• IF THEN/ELSEIF THEN/ELSE/END IF

• CASE/WHEN THEN/ELSE/END CASE

• LOOP/END LOOP

• LEAVE

• ITERATE

• REPEAT/UNTIL/END REPEAT

• WHILE/DO/END WHILE

CASE
CASE [value]

WHEN expression THEN statements

[ELSE statements]

END CASE

Based on an optional value, the statements executes for the WHEN
expression that matches that value. If no value matches, the ELSE
statements are executed. When no value is specified, the true WHEN
values are executed.

Example
CASE @total
WHEN 0 THEN UPDATE web_site SET ssl_port = 0 WHERE web_
site_id = siteId;
ELSE UPDATE web_site SET ssl_port = 443 WHERE web_site_id
= siteId;
END CASE;

Stored Procedures and Functions | 119

IF
IF expression THEN statements

[ELSEIF expression THEN statements]

[ELSE statements]

END IF

Defines the conditional execution of one or more statements
based on the truth value of an expression or series of expression
values.

Example
IF total > 0 THEN UPDATE web_site SET ssl_port = 443 WHERE
web_site_id = siteId;
ELSE UPDATE web_site SET ssl_port = 0 WHERE web_site_id =
siteId;
END IF;

LOOP
[label:] LOOP

statements

END LOOP [label]

Executes the statements repeatedly until the loop is exited via
LEAVE. By labeling the loop, you can match potentially ambiguous
beginning and ending points for loops. The labels are arbitrary,
but they must match each other.

Example
DECLARE total INT DEFAULT 0;
counter: LOOP
SET total = total + 1;
IF total > 50 THEN LEAVE counter; END IF;
END LOOP counter;

LEAVE
LEAVE label

Exits the flow control operation labeled by label.

120 | MySQL Pocket Reference

ITERATE
ITERATE label

Breaks the control of the flow control operation specified by label
to start over again. This statement is analogous to “continue” in
languages such as Java and C.

REPEAT
[label:] REPEAT

statements

UNTIL expression

END REPEAT [label]

Loops through statements repeatedly until the expression in the
UNTIL clause evaluates true.

Example
DECLARE total INT DEFAULT 0;
counter: REPEAT
SET total = total + 1;
UNTIL total > 50
END REPEAT counter;

WHILE
[label:] WHILE expression DO

statements

END WHILE [label]

Loops through statements repeatedly until the expression in the
WHILE clause evaluates false.

Example
DECLARE total INT DEFAULT 0;
counter: WHILE total < 51 DO
SET total = total + 1;
END WHILE counter;

Stored Procedures and Functions | 121

Cursors

Cursors enable you to operate on a set of results from a
query one row at a time. Declare a cursor using the DECLARE
command and associate it with a specific SQL query:

DECLARE site CURSOR FOR SELECT web_site_id FROM web_site;

Your procedure then fetches one row at a time from the cur-
sor and executes logic based on data from that row:

DELIMITER //
CREATE PROCEDURE set_ssl()
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE site_id BIGINT;
DECLARE total INT;
DECLARE site CURSOR FOR
SELECT web_site_id FROM web_site;
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done =
1;
OPEN site;

REPEAT
FETCH site INTO site_id;
IF NOT done THEN
 SELECT COUNT(*) INTO total FROM web_address WHERE using_
ssl = 'Y';
 IF total > 0 THEN
 UPDATE web_site SET supports_ssl = 'Y' WHERE web_site_
id = site_id;
 ELSE
 UPDATE web_site SET supports_ssl = 'N' WHERE web_site_
id = site_id;
 END IF;
END IF;
UNTIL done
END REPEAT;

CLOSE site;

END
//

122 | MySQL Pocket Reference

Handlers and Conditions
MySQL lets you know when a certain condition arises dur-
ing the course of stored procedure processing through the
use of handlers and conditions. The cursor example in the
previous section included code that declared a handler to
manage SQLSTATE '02000'—the end of the result set.

When declaring a handler, you define a handler type, what
the handler is for, and the SQL to execute when the handler
situation arises. MySQL supports the following types of
handlers:

CONTINUE
When the handler is executed, the SQL that generated it
continues as if nothing happened.

EXIT
After the handler is executed, execution terminates for
the BEGIN/END block in which it was embedded.

UNDO
Unsupported in MySQL.

The FOR clause of the handler declaration defines the circum-
stance under which the handler is called. You can specify any
of the following scenarios:

• SQLSTATE error codes

• Your own custom conditions

• Shorthands for SQLSTATE codes to match: NOT FOUND,
SQLWARNING, SQLEXCEPTION

Defining your own custom conditions consists of setting up
simple names for specific SQLSTATE codes you are trying to
handle; you can then subsequently use those conditions in
handlers:

DECLARE THEEND CONDITION FOR SQLSTATE '02000';
DECLARE CONTINUE HANDLER FOR THEEND SET done = 1;

Triggers | 123

Triggers
Like a stored procedure, a trigger is processing logic stored in
the database. Where a stored procedure executes in response
to a specific application request, a trigger executes whenever
a particular database event occurs. For any given event, you
can define a trigger to execute BEFORE or AFTER the event. The
events on which you can build a trigger are:

INSERT
The trigger will execute whenever a row is inserted into
the database.

UPDATE
The trigger will execute whenever a row is updated in the
database.

DELETE
The trigger will execute whenever a row is deleted from
the database.

Trigger definition works much like stored procedure defini-
tion in that your logic can be made up of compound SQL
nestled inside a BEGIN/END block. The main difference is that
your logic is also bounded by a FOR EACH ROW section:

DELIMITER //
CREATE TRIGGER zap_addresses AFTER DELETE ON web_site
FOR EACH ROW BEGIN
DELETE FROM web_address WHERE web_site_id = OLD.web_site_
id;
END;

The special identifiers NEW and OLD reference the new and old
row values, respectively.

125

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
absolute naming, 33
aggregate functions, 91–93
aliasing, 34, 77
ARCHIVE storage engine, 4
arithmetic operators, 88

B
binary literals, 32
bit values, 32
BLACKHOLE storage engine, 4

C
case-sensitivity, 31
command-line tools, 12–15
comments, 34
comparison operators, 89
complex data types, 28–30
conditions, stored

procedures, 122
configuration

MySQL, 6
replication, 10

CSV storage engine, 4
cursors, 4

D
data types, 15

complex, 28–30
dates, 26–28
numeric, 16–21
strings, 21–26

databases, events, 5
date data types, 26–28
decimals, 32

F
FALCON storage engine, 4
FEDERATED storage engine, 4
functions

aggregate, 91–93
general, 93–114

G
general functions, 93–114

H
handlers, stored procedures, 122

I
identifiers, 33
InnoDB storage engine, 4

126 | Index

J
joins, 78–79

L
Linux (see Unix startup)
literals, 31

binary literals, 32
bit values, 32
decimals, 32
hexadecimals, 33
string literals, 31

logic, stored procedures, 117
logical operators, 91

M
Mac OS X startup, 9
MERGE storage engine, 4
MyISAM storage engine, 4
MySQL

configuration, 6
downloading, 5

N
NDB/NDBCLUSTER storage

engine, 4
numeric data types, 16–21

O
operators

arithmetic, 88
comparison, 89
logical, 91
rules of precedence, 87

P
password, root, 10
precedence, operators, 87

R
relative naming, 33
replication, 10

master configuration, 10
slave configuration, 11

root password, 10
rules of precedence,

operators, 87

S
Solaris startup, 9
SQL, version supported, 30
startup

Mac OS X, 9
Solaris, 9
Unix, 9

storage engines, 4, 114
stored procedures, 3

conditions, 122
handlers, 122
logic, 117
parameters, 116

string data types, 21–26
string literals, 31

T
transactions, rules, 86–87
triggers, 3, 123

U
Unix startup, 9
utilities, 12–15

V
views, 3

	MySQL Pocket Reference, Second Edition
	Contents
	MySQL Pocket Reference
	Introduction
	MySQL 5
	Views
	Triggers
	Stored Procedures
	Cursors
	New Storage Engines
	Database Events

	Setup
	Downloading MySQL
	Configuration
	Startup
	Mac OS X
	Solaris
	Other Unix

	Set the Root Password
	Replication
	Master configuration
	Slave configuration

	Command-Line Tools
	Data Types
	Numerics
	BIGINT
	BIT
	DEC
	DECIMAL
	DOUBLE
	DOUBLE PRECISION
	FLOAT
	INT
	INTEGER
	MEDIUMINT
	NUMERIC
	REAL
	SMALLINT
	TINYINT

	Strings
	BINARY
	BLOB
	CHAR
	CHARACTER
	CHARACTER VARYING
	LONGBLOB
	LONGTEXT
	MEDIUMBLOB
	MEDIUMTEXT
	NCHAR
	NATIONAL CHAR
	NATIONAL CHARACTER
	NATIONAL VARCHAR
	TEXT
	TINYBLOB
	TINYTEXT
	VARBINARY
	VARCHAR

	Dates
	DATE
	DATETIME
	TIME
	TIMESTAMP
	YEAR

	Complex Types
	ENUM
	SET

	SQL
	Case Sensitivity
	Literals
	Identifiers
	Comments
	Commands
	ALTER DATABASE
	ALTER EVENT
	ALTER FUNCTION
	ALTER PROCEDURE
	ALTER TABLE
	ALTER TABLESPACE
	ALTER VIEW
	ANALYZE TABLE
	BEGIN
	CALL
	CHANGE MASTER
	CLOSE
	COMMIT
	CREATE DATABASE
	CREATE EVENT
	CREATE FUNCTION
	CREATE INDEX
	CREATE PROCEDURE
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DECLARE
	DELIMITER
	DELETE
	DESCRIBE
	DESC
	DO
	DROP DATABASE
	DROP EVENT
	DROP FUNCTION
	DROP INDEX
	DROP PROCEDURE
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	EXPLAIN
	FETCH
	FLUSH
	GRANT
	INSERT
	KILL
	LOAD
	LOCK
	OPEN
	OPTIMIZE
	RELEASE SAVEPOINT
	RENAME DATABASE
	RENAME USER
	REPLACE
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET
	SHOW
	TRUNCATE
	UNLOCK
	UPDATE
	USE

	Transaction Rules

	Operators
	Rules of Precedence
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	Functions
	Aggregate Functions
	General Functions

	Storage Engines
	Stored Procedures and Functions
	Parameters
	Logic
	CASE
	IF
	LOOP
	LEAVE
	ITERATE
	REPEAT
	WHILE
	Cursors

	Handlers and Conditions

	Triggers

	Index

